46 resultados para METAL HEXACYANOMETALATE FILMS
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3 2-) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.
Resumo:
Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the construction and application of two amperometric sensors for sensitive UV-filter determination. The sensors were prepared using stainless steel electrodes in which polyaniline (PANI) was electrochemically polymerized in the presence of nickel (NiPcTS) or iron (FePcTS) tetrasulfonated phthalocyanines. The sensor surface characterizations were carried out using atomic force microscopy (AFM). The PANI/NiPcTS sensor was selective for the chemical UV-filter p-aminobenzoic acid (PABA) and the PANI/FePcTS sensor was selective for octyldimethyl-PABA (ODP), both in a mixture of tetrahydrofuran (THF) and 0.1 mol L(-1) H(2)SO(4) at a volume ratio of 30 : 70, and with an applied potential of 0.0 mV vs. Ag vertical bar AgCl. A detailed investigation of the selectivity was carried out for both sensors, in order to determine their responses for ten different UV filters. Finally, each sensor was successfully applied to PABA or ODP quantification in sunscreen formulations and water from swimming pools.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on the formation of Langmuir films of 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphine,hereafter named tetrapyridyl porphyrins with distinct central ions (2H(+), Zn(2+), Cu(2+), Ni(2+)). The films were characterized with surface pressure and surface potential isotherms and in situ UV-vis absorbance. The measurements indicated strong aggregation of porphyrin monomers at the air-water interface, with a red shift of the Soret band in comparison with the spectrum obtained from CHCl(3) solutions. The shift was larger for the non-substituted H(2)TPyP, and depended on the metal ion. Significantly, aggregation occurred right after spreading of the Langmuir film, with on further shifts in the UV-vis spectra upon compression of the film, or even after transferring them onto solid substrates in the form of Langmuir-Blodgett (LB) films. The buildup of LB films from H(2)TPyP and ZnTPyP was monitored with UV-vis spectroscopy, indicating an equal amount of material deposited in each deposition step. Using FTIR in the transmission and reflection modes, we inferred that the H(2)TPyP molecules exhibit no preferential orientation in the LB films, while for ZnTPyP there is preferential orientation, with the porphyrin molecules anchored to the substrate by the lateral pyridyl groups. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Photopyroelectric spectroscopy (PPES), in the 400 < lambda < 900 nm wavelength range, was used to study thermal properties of differently doped polyaniline (PAN) films. The photopyroelectric intensity signal V-n(lambda) and its phase F-n(lambda) were independently measured, as well as the intensity V-n(f) and the phase F-n(f) (f being the chopping frequency) for a given A of the saturation part of the PPES spectrum. Equations of both the intensity and the phase of the PPES signal, taking into account the thermal and the optical characteristics of the PAN films and the pyroelectric detector, were used to fit the experimental results. From the fittings we obtained, with great accuracy, the values of thermal conductivity k and thermal diffusivity coefficient a of PAN films of different doping degrees. It was observed that, in contrast with the strong doping-dependence of the electrical conductivity, the thermal parameters of PAN films remained practically unchanged under doping. This apparent discrepancy is explained by the granular metal model of doped PAN. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Ba(Zr0.50Ti0.50)O-3 thin films were prepared by the polymeric precursor method using the annealing low temperature of 300 degrees C for 8, 16, 24, 48, 96 and 192 It in a furnace tube with oxygen atmosphere. The X-ray diffraction patterns revealed that the film annealed for 192 h presented some crystallographic planes (1 0 0), (1 1 0) and (2 0 0) in its crystalline lattice. Fourier transformed infrared presented the formation of metal-oxygen stretching at around 756 cm(-1). The atomic force microscopy analysis presented the growth of granules in the Ba(Zr0.50Ti0.50)O-3 films annealed from 8 to 96 h. The crystalline film annealed for 192 h already presents grains in its perovskite structure. It evidenced a reduction in the thickness of the thin films with the increase of the annealing time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The nature of defects in polycrystalline Bi4-xLaxTi3O12 (BLT) thin films with x=0.00, 0.25, 0.50, and 0.75 was evaluated by x-ray photoemission spectroscopy measurements. The influence of oxygen vacancies and substitution of Bi for La atoms were discussed. In the BLT thin films, it was found that the oxygen ions at the metal-oxygen octahedral were much more stable than those at the [Bi2O2] layers. on the other hand, for Bi4Ti3O12 (BIT) thin film, oxygen vacancies could be induced both at the titanium-oxygen octahedral and at the [Bi2O2] layers. The oxygen-vacancy defect pairs determined in BIT and Bi3.75La0.25Ti3O12 (BLT025) can pin the polarization of surrounding lattices leading to fatigue of capacitors. Meanwhile, the concentration of similar defect pairs is relatively low in heavily doped BIT films and then good fatigue resistance is observed.
Resumo:
The anodic behaviour of cast Ti-Mo alloys, having different Mo contents (6-20 wt.%), was investigated in acidic and neutral aerated aqueous solutions. All sample showed a valve-metal behaviour, owing to formation and thickening of barrier-type anodic oxides displaying interference colours Growth kinetics. of passive films is influenced by both anodizing electrolyte and composition of the starting alloy. This last parameter was found to change also the solid-state properties of the films, explored by photoelectrochemical and impedance spectroscopy experiments. Thicker films (U(f) = 8 V/MSE) grown on alloys richer in Mo showed more resistive character and a photocurrent sign inversion under negative bias, that revealed an insulating character, whereas corresponding films grown on alloys with lower Mo content, as well as thinner films, behaved as n-type semiconductors. Results are discussed in terms of formation of a mixed Ti-Mo oxide phase. (C) 2008 Elsevier Ltd. All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Study of the dielectric and ferroelectric properties of chemically processed BaxSr1-xTiO3 thin films
Resumo:
Polycrystalline BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films with a perovskite structure were prepared by the polymeric precursor method on a platinum-coated silicon substrate. High-quality thin films with uniform composition and thickness were successfully produced by dip-coating and spin-coating techniques. The resulting thin films prepared by dip and spin-coating showed a well-developed dense polycrystalline structure with uniform grain size distribution. The metal-BST-metal structure of the thin films displays good dielectric and ferroelectric properties. The ferroelectric nature to BaxSr1-xTiO3 (x = 0.8) thin film, indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed 2P(r) = 5.0 muC/cm(2) and E-c = 20 kV/cm. The capacitance-frequency curve reveals that the dielectric constant may reach a value of up to 794 at 1 kHz. on the other hand, the BaxSr1-xTiO3 (x = 0.4) thin films had paraelectric nature and dielectric constant and the dissipation factor at a frequency of 100 kHz were 680 and 0.01, respectively, for film annealed at 700 degreesC. In addition, an examination of the film's I-V curve at room temperature revealed the presence of two conduction regions in the BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films, showing ohmic-like behavior at low voltage and a Schottky-emission or Poole-Frenkel mechanism at high voltage. (C) 2001 Elsevier B.V. B.V. All rights reserved.