261 resultados para Linear optimal control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we analyzed a bifurcational behavior of a longitudinal flight nonlinear dynamics, taking as an example the F-8 aircraft Crusader. We deal with an analysis of high angles of attack in order to stabilize the oscillations; those were close to the critical angle of the aircraft, in the flight conditions, established. We proposed a linear optimal control design applied to the considered nonlinear aircraft model below angle of stall, taking into account regions of Hopf and saddled noddle bifurcations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of signal tracking, in the presence of a disturbance signal in the plant, is solved using a zero-variation methodology. A state feedback controller is designed in order to minimise the H-2-norm of the closed-loop system, such that the effect of the disturbance is attenuated. Then, a state estimator is designed and the modification of the zeros is used to minimise the H-infinity-norm from the reference input signal to the error signal. The error is taken to be the difference between the reference and the output signals, thereby making it a tracking problem. The design is formulated in a linear matrix inequality framework, such that the optimal solution of the stated control problem is obtained. Practical examples illustrate the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work concerns the application of the optimal control theory to Dengue epidemics. The dynamics of this insect-borne disease is modelled as a set of non-linear ordinary differential equations including the effect of educational campaigns organized to motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water in open-air recipients. The cost functional is such that it reflects a compromise between actual financial spending (in insecticides and educational campaigns) and the population health (which can be objectively measured in terms of, for instance, treatment costs and loss of productivity). The optimal control problem is solved numerically using a multiple shooting method. However, the optimal control policy is difficult to implement by the health authorities because it is not practical to adjust the investment rate continuously in time. Therefore, a suboptimal control policy is computed assuming, as the admissible set, only those controls which are piecewise constant. The performance achieved by the optimal control and the sub-optimal control policies are compared with the cases of control using only insecticides when Breteau Index is greater or equal to 5 and the case of no-control. The results show that the sub-optimal policy yields a substantial reduction in the cost, in terms of the proposed functional, and is only slightly inferior to the optimal control policy. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, an optimal control strategy that directs the chaotic motion of the Rossler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.