75 resultados para Linear equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O conhecimento da área foliar de plantas daninhas pode auxiliar o estudo das relações de interferência entre elas e as culturas agrícolas. O objetivo desta pesquisa foi determinar uma equação matemática que estime a área foliar de Merremia cissoides, a partir da relação entre as dimensões lineares dos limbos foliares. Folhas da espécie foram coletadas de diferentes locais na Universidade Estadual Paulista, Jaboticabal, Estado de São Paulo, Brasil, medindo-se o comprimento (C), a largura máxima (L) e a área foliar de três tipos de folíolos. Foram estimadas equações lineares Y = a x (X) para cada tipo de folíolo. Houve sobreposição dos intervalos de confiança das equações dos folíolos primário e secundário, por isso considerou-se uma única equação da média desses folíolos, além da equação do folíolo principal, para caracterização da área foliar de M. cissoides. Assim, a área foliar dessa espécie pode ser estimada pelo somatório das áreas dos limbos foliares dos folíolos principal e primário + secundário, por meio da equação AFnest = 0,501 x (X) + 2,181 x (Z), em que X indica C x L do folíolo principal e Z indica C x L médios dos folíolos primário + secundário, respectivamente.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a numerical solution for the steady 2D Navier-Stokes equations using a fourth order compact-type method. The geometry of the problem is a constricted symmetric channel, where the boundary can be varied, via a parameter, from a smooth constriction to one possessing a very sharp but smooth corner allowing us to analyse the behaviour of the errors when the solution is smooth or near singular. The set of non-linear equations is solved by the Newton method. Results have been obtained for Reynolds number up to 500. Estimates of the errors incurred have shown that the results are accurate and better than those of the corresponding second order method. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permitisse estimar a área foliar de Wissadula subpeltata (Kuntze) Fries, estudaram- se correlações entre a área foliar real e o comprimento da folha ao longo da nervura principal (C ), largura máxi ma da folha (L) , comprimento do espaço entre o ponto de inserção do pecíolo na folha até a primeira ramificação da nervura principal (CE), L + C, L x C e L x CE. Todas as equações, geométricas ou lineares simples, permitiram boas estimativas da área foliar . do pont o de vista prático, sugere- se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Deste modo, a estimativa da área foliar de W. subpeltata pode ser feita pel a fórmula Y = 0, 85 49 (C x L), ou seja 85 ,49% do produto entre o comprimento da nervura principal e a largura máxima da folha.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O conhecimento da área foliar de plantas daninhas pode auxiliar o estudo das relações de interferência entre elas e as culturas agrícolas. O objetivo desta pesquisa foi determinar uma equação matemática que estime a área foliar de Merremia aegyptia, a partir da relação entre as dimensões lineares dos limbos foliares. Folhas da espécie foram coletadas de diferentes locais na Universidade Estadual Paulista, Jaboticabal, Brasil, medindo-se o comprimento (C), a largura máxima (L) e a área foliar de três tipos de folíolos. Foram estimadas equações lineares (Y = a*X) para cada tipo de folíolo. A área foliar da espécie pode ser estimada pelo somatório das áreas dos limbos foliares de cada tipo de folíolo, por meio da equação AFest = 0,547470(X) + 1,145298(Y) + 1,244146(Z), em que X indica C*L do folíolo principal e Y e Z indicam C*L médios dos folíolos primário e secundário, respectivamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuous inputs from agriculture areas and human or industrial sewer have been provided a widely demographic explosion of tropical tanner-grass and para grasss plants in the rivers and water reservoirs of Brazil. Considering the importance of these noxious weeds there is a vast necessity of basic studies on aspects related to reproduction, growing, development, nutritional requirements, responses to control systems and others. In most studies, leaf area knowledge is crucial and it is one of the most difficult characteristics to be measured because it usually requires expensive equipments or it uses a destructive technique. The objective of this work was to develop equations for leaf blade dimensional parameters to allow determination of the leaf area of African tanner-grass (Brachiaria subquadripara (Trin.) Hitchc) and para grass (Brachiaria mutica (Forsk.) Stapf.). Correlations between real leaf area and dimensional parameters of leaf blade such as length along the main vein (L) and maximum width (W) perpendicular to the main axis were studied. Only the linear equations allowed a good leaf area estimate. It is suggested to opt for a simple linear equation involving respective products of length times maximum width considering linear coefficient equal to zero. Thus, B. subquadripara (SS) and B. mutica (SM) non destructive leaf blade area estimates may be performed by the following formulas: SS = 0.7719 (L x W) and SM = 0.7479 (L x W), with coefficients of determination (R(2)) of 0.9594 and 0.9408, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Block diagrams and signal-flow graphs are used to represent and to obtain the transfer function of interconnected systems. The reduction of signal-flow graphs is considered simpler than the reduction of block diagrams for systems with complex interrelationships. Signal-flow graphs reduction can be made without graphic manipulations of diagrams, and it is attractive for a computational implementation. In this paper the authors propose a computational method for direct reduction of signal-flow graphs. This method uses results presented in this paper about the calculation of literal determinants without symbolic mathematics tools. The Cramer's rule is applied for the solution of a set of linear equations, A program in MATLAB language for reduction of signal-flow graphs with the proposed method is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.