200 resultados para Lethal dose


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acute toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D), a herbicide, was studied in chicks dosed with 100, 300, 500, or 600 mg 2,4-D/kg BW, by the oral route. Clinical, laboratory, and histopathological methods were used as indicators of toxicity. After acute exposure, the herbicide decreased motor activity and induced muscular weakness and motor incoordination; decreased weight gain; increased serum creatine kinase (CK) and alkaline phosphatase (AP) activities and serum uric acid (UA), creatinine (CR), and total proteins (TP) levels; and did not change serum aspartate aminotransferase (AST) or alanine aminotransferase (ALT) activities. These changes were time-and dose-dependent and reversible. The LD50 (lethal dose 50%) calculated for oral 2,4-D in chicks was 420 mg/kg BW (385 to 483). Chromatographic analysis of the serum of the intoxicated chicks showed the presence of the herbicide; the amount found was dose-and time-dependent, increasing from 2 to 8 h after exposure and decreasing afterwards. Histopathological post-mortem studies conducted on intoxicated chicks showed hepatic (vacuolar degeneration of the hepatocytes), renal (tubular nephrosis), and intestinal (hemorragic) lesions. Taken together, the observed alterations mainly reflected kidney and muscle tissue damage, although hepatic toxicity may also have occurred after acute 2,4-D intoxication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formulation of a drug can interfere with its absorption into the circulatory system and may result in changes in the dose required to achieve that particular effect. The aim of this study was to determine the lethal dose 50 (LD 50) and 100 (LD100) of a nanoemulsion of propofol and the lipid emulsion in mice intraperitoneally. One hundred sixty animals weighing 36.47 +/- 4.6g, which were distributed randomly into two groups: NANO and EMU who received propofol 1% in the nanoemulsion and lipid emulsion, respectively, intraperitoneally. Began with a dose of 250mg/kg (n=10) and from this isdecreased or increased the dose until achieving 0 and 100% of deaths in each group thus formed were seven subgroups in NANO (each subgroup n = 10) at doses 200, 250, 325, 350, 400, 425 and 475 mg/kg and in EMU eight subgroups (n= 10 each subset) 250, 325, 350, 400, 425, 475, 525 and 575 mg/kg. In the CONTROL group (n= 10) animals received saline in the largest volume used in the other groups to rule out death by the volume injected. Analysis of LD 50 and LD 100 were obtained by linear regression. The LD 50 was 320, 95 mg / kg and 4243, 51mg / kg and the LD 100 was445.99 mg / kg and 595.31 mg / kg to groups NANO and EMU, respectively. It follows that nanoemulsion is propofol in 25% more potent compared to the lipid emulsionintraperitoneally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equine antivenom is considered the only treatment for animal-generated envenomations, but it is costly. The study aimed to produce Apis mellifera (Africanized honeybee) and Crotalus durissus terrificus (C.d.t.) antivenoms using nanostructured silica (SBA-15) as adjuvant and cobalt-60 (60Co)-detoxified venoms utilizing young sheep. Natural and 60Co-irradiated venoms were employed in four different hyperimmunization protocols. Thus, 8 groups of 60- to 90-d-old sheep were hyperimmunized, enzyme-linked immunosorbent assay (ELISA) serum titers collected every 14 d were assessed clinically daily, and individual weight were measured, until d 84. Incomplete Freund's (IFA) and nanostructured silica (SBA15) adjuvants were compared. The lethal dose (LD50) for both venoms was determined following intraperitoneal (ip) administration to mice. High-performance liquid chromatography on reversed phase (HPLC-RP) was used also to measure the 60Co irradiation effects on Apis venom. At the end of the study, sheep were killed in a slaughterhouse. Kidneys were histologically analyzed. LD50 was 5.97 mg/kg Apis and 0.07 mg/kg C.d.t. for native compared to 13.44 mg/kg Apis and 0.35 mg/kg C.d.t. for irradiated venoms. HPLC revealed significant differences in chromatographic profiles between native and irradiated Apis venoms. Native venom plus IFA compared with SBA-15 showed significantly higher antibody titers for both venoms. Apis-irradiated venom plus IFA or SBA-15 displayed similar antibody titers but were significantly lower when compared with native venom plus IFA. Weight gain did not differ significantly among all groups. 60Co irradiation decreased toxicity and maintained venom immunogenic capacity, while IFA produced higher antibody titers. SBA-15 was able to act as an adjuvant without producing adverse effects. Hyperimmunization did not affect sheep weight gain, which would considerably reduce the cost of antiserum production, as these sheep were still approved for human consumption even after being subjected to hyperimmunization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os timbós verdadeiros (plantas do gênero Derris), originários da Amazônia Brasileira, tem demonstrado importância crescente por produzirem uma classe de compostos flavonoídicos relacionados à rotenona, que possuem atividade tóxica para peixes e mamíferos. Neste estudo foi determinado a dose letal 50% (DL50) do extrato alcoólico do pó de Derris spp para três espécies de peixes filogeneticamente diferentes e um mamífero roedor (rato). As DL50 de 2,6 microgramas/ml para Collosoma macropomum (tambaqui), 4,8 microgramas/ml para Oreochromis niloticus (tilápia), 14,2 microgramas/ml para Plecostomus sp (cascudo) e DL50 de 100,0 mg/kg para Rattus norvegicus (rato) denotam acentuadas diferenças entre os valores de DL50, principalmente entre os peixes e o rato. Isto possivelmente é devido a fatores farmaco-cinéticos que se relacionam com as diferentes barreiras teciduais encontradas pelos rotenóides quando administrados pela via oral em mamíferos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracts from Holostylis reniformis were tested in vivo against Plasmodium berghei and in vitro against a chloroquine-resistant strain of Plasmodium falciparum. The hexane extract of the roots was the most active, causing 67% reduction of parasitemia in vivo. From this extract, six lignans, including a new (7 ' R,8S,8 ' S)-3 ',4 '-methylenedioxy-4,5-dimethoxy-2,7 '-cyclolignan-7-one, were isolated and tested in vitro against P. falciparum. The three most active lignans showed 50% inhibitor concentrations of <= 0.32 mu M. An evaluation of minimum lethal dose (30%) values showed low toxicity for these lignans in a hepatic cell line (Hep G2A16). Therefore, these compounds are potential candidates for the development of antimalarial drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of macrophage blockade on the natural resistance and on the adaptative immune response of susceptible (B10.D2/oSn) and resistant (A/Sn) mice to Paracoccidioides brasiliensis infection was investigated. B10.D2/oSn and A/Sn mice previously injected with colloidal carbon were infected ip with yeast cells to determine the 50% lethal dose, and to evaluate the anatomy and histopathology, macrophage activation, antibody production and DTH reactions. Macrophage blockade rendered both resistant and susceptible mice considerably more susceptible to infection, as evidenced by increased mortality and many disseminated lesions. P. brasiliensis infection and/or carbon treatment increased the ability of macrophages from resistant mice to spread up to 25 days after treatment. In susceptible mice the enhanced spreading capacity induced by carbon treatment was impaired at ail assayed periods except at 1 week after infection. Macrophage blockade enhanced DTH reactions in resistant mice, but did not alter these reactions in susceptible mice, which remained anergic. To the contrary, macrophage blockade enhanced specific antibody production by susceptible mice, but did nor affect the low levels produced by resistant mice. The effect of macrophage blockade confirms the natural tendency of resistant animals to mount DTH reactions in the course of the disease and the preferential antibody response developed by susceptible mice after P. brasiliensis infection. on the whole, macrophage functions appear to play a fundamental role in the natural and acquired resistance mechanisms to P. brasiliensis infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical parameters and biochemical and cellular changes in the plasma and peritoneal fluid were evaluated in horses after i.v. injection of a sub-lethal dose (50 ng/kg) of E. coli endotoxin. A significant decrease in the number of neutrophils and lymphocytes occurred in the blood 1h 15 min and 3 hours after injection of endotoxin; body temperature was increased significantly at the 3rd hour. No changes were detected in the total number of white blood cells in the peritoneal fluid. No significant differences in biochemical values were detected in either plasma or peritoneal fluid. Endotoxemia caused an alteration in blood cellularity, without effecting the peritoneal cellular population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cassava is a widely grown root crop which accumulates two cyanogenic glucosides, linamarin and lotaustralin. Linamarin accounts for more than 80% of the cassava cyanogenic glucosides. It is a β-glucoside of acetone cyanohydrin and ethyl-methyl-ketone-cyanohydrin. Linamarin β-linkage can only be broken under high pressure, high temperature and use of mineral acids, while its enzymatic break occurs easily. Linamarase, an endogenous cassava enzyme, can break this β-linkage. The enzymatic reaction occurs under optimum conditions at 25°C, at pH 5.5 to 6.0. Linamarin is present in all parts of the cassava plant, being more concentrated on the root and leaves. If the enzyme and substrate are joined, a good detoxification can occur. All the cassava plant species are known to contain cyanide. Toxicity caused by free cyanide (CN-) has already been reported, while toxicity caused by glucoside has not. The lethal dose of CN- is 1 mg/kg of live weight; hence, cassava root classification into toxic and non-toxic depending on the amount of cyanide in the root. Should the cyanide content be high enough to exceed such a dose, the root is regarded as toxic. Values from 15 to 400 ppm (mg CN-/kg of fresh weight) of hydrocyanic acid in cassava roots have been mentioned in the literature. However, more frequent values in the interval 30 to 150 ppm have been observed. Processed cassava food consumed in Brazil is safe in regard to cyanide toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major challenge in cancer radiotherapy is to deliver a lethal dose of radiation to the target volume while minimizing damage to the surrounding normal tissue. We have proposed a model on how treatment efficacy might be improved by interfering with biological responses to DNA damage using exogenous electric fields as a strategy to drastically reduce radiation doses in cancer therapy. This approach is demonstrated at this Laboratory through case studies with prokaryotes (bacteria) and eukaryotes (yeast) cells, in which cellkilling rates induced by both gamma radiation and exogenous electric fields were measured. It was found that when cells exposed to gamma radiation are immediately submitted to a weak electric field, cell death increases more than an order of magnitude compared to the effect of radiation alone. This finding suggests, although does not prove, that DNA damage sites are reached and recognized by means of long-range electric DNA-protein interaction, and that exogenous electric fields could destructively interfere with this process. As a consequence, DNA repair is avoided leading to massive cell death. Here we are proposing the use this new technique for the design and construction of novel radiotherapy facilities associated with linac generated gamma beams under controlled conditions of dose and beam intensity.