92 resultados para Dynamical System
Resumo:
In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.
Resumo:
This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.
Resumo:
In this paper, we consider non-ideal excitation devices such as DC motors with restrictenergy output capacity. When such motors are attached to structures which needexcitation power levels similar to the source power capacity, jump phenomena and theincrease in power required near resonance characterize the Sommerfeld Effect, actingas a sort of an energy sink. One of the problems often faced by designers of suchstructures is how to drive the system through resonance and avoid this energy sink.Our basic structural model is a simple portal frame driven by a num-ideal powersource-(NIPF). We also investigate the absorption of resonant vibrations (nonlinearand chaotic) by means of a nonlinear sub-structure known as a Nonlinear Energy Sink(NES). An energy exchange process between the NIPF and NES in the passagethrough resonance is investigated, as well the suppression of chaos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
In this Letter, an optimal control strategy that directs the chaotic motion of the Rossler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.