119 resultados para Doubled haploid lines
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A cytogenetic study was carried out with 5-azacytidine (5-azaC) and etoposide (VP-16) in CHO-K1 and XRS-5 (mutant cells deficient for double-strand break rejoining) cell lines to verify the interaction effects of the drugs in terms of induction of chromosomal aberrations. 5-azaC is incorporated into DNA causing DNA hypomethylation, and VP-16 (inhibitor of topoisomerase 11 enzyme) is a potent clastogenic agent. Cells in exponential growth were treated with 5-azaC for I h, following incubation for 7 h, and posttreatment with VP16 for the last 3 h. In K1 cells, the combined treatments induced a significant reduction in the aberrations induced in the X and A (autosome) chromosomes, which are the main target for 5-azaC. However, in XRS-5 cells, the drug combination caused a significant increase in the aberrations induced in those chromosomes, but with a concomitant reduction in the randomly induced-aberrations. In addition, each cell line presented characteristic cell cycle kinetics; while the combined treatment induced an S-arrest in K1 cells, alterations in cell cycle progression were not found for XRS-5, although each drug alone caused a G2-arrest. The different cell responses presented by the cell lines may be explained on the basis of the evidence that alterations in chromatin structure caused by 5-aza-C probably occur to a different extent in K1 and XRS-5 cells, since the mutant cells present a typical hyper-condensed chromosome structure (especially the X- and A chromosomes), but, alternatively, 5-aza-C could induce reactivation of DNA repair genes in XRS-5 cells. Teratogenesis Carcinog. Mutagen. Suppl. 1:171-186, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Double three-phase transmission lines are analyzed in this paper using a modal transformation model. The main attribute of this model is the use of a single real transformation matrix based on line geometrical characteristics and the Clarke matrix. Because of this, for any line point, the electrical values can be accessed for phase domain or mode domain using the considered transformation matrix and without convolution methods. For non-transposed symmetrical lines the errors between the model results and the exact modes are insignificant values. The eigenvector and eigenvalue analyses for transposed lines search the similarities among the three analyzed transposition types and the possible simplifications for a non-transposed case.
Resumo:
Eigenvector and eigenvalue analyses are carried out for double three-phase transmission lines, studying the application of a constant and real phase-mode transformation matrix and the errors of this application to mode line models. Employing some line transposition types, exact results are obtained with a single real transformation matrix based on Clarke's matrix and line geometrical characteristics. It is shown that the proposed technique leads to insignificant errors when a nontransposed case is considered. For both cases, transposed and nontransposed, the access to the electrical values (voltage and current, for example) is provided through a simple matrix multiplication without convolution methods. Using this facility, an interesting model for transmission line analysis is obtained even though the nontransposed case errors are not eliminated. The main advantages of the model are related to the transformation matrix: single, real, frequency independent, and identical for voltage and current.