29 resultados para Crack paths
Resumo:
Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experimental programs in constant and variable amplitude loading were performed to obtain a x N curves and to study retardation in fatigue crack growth due to overloads. The main aim of this research program was to analyse the effect of overload ratio and number of overload peaks. The effect of underloads, before and after the overload blocks was also studied. The generalised equation of Paris-Erdogan type was used for modelling of obtained data on crack propagation under constant amplitude load.
Resumo:
The consequences of the use of embedded crack finite elements with uniform discontinuity modes (opening and sliding) to simulate crack propagation in concrete are investigated. It is shown the circumstances in which the consideration of uniform discontinuity modes is not suitable to accurately model the kinematics induced by the crack and must be avoided. It is also proposed a technique to embed cracks with non-uniform discontinuity modes into standard displacement-based finite elements to overcome the shortcomings of the uniform discontinuity modes approach.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Intercalation processes and corresponding diffusion paths of Li ions into spinel-type structured Li(1+x)Ti(2)O(4) (0 <= x <= 0.375) are systematically studied by means of periodic density functional theory calculations for different compositions and arrangements. An analysis of the site preference for intercalation processes is carried out, while energy barriers for the diffusion paths have been computed in detail. Our results indicate that the Li insertion is thermodynamically favorable at octahedral sites 16c in the studied composition range, and Li migration from tetrahedral sites 8a to octahedral sites 16c stabilizes the structure and becomes favorable for compositions x >= 0.25. Diffusion paths from less stable arrangements involving Li migrations between tetrahedral and octahedral sites exhibit the lowest energy barrier since the corresponding trajectories and energy profiles take place across a triangle made by three neighboring oxygen anions without structural modification. Theoretical and experimental diffusion coefficients are in reasonable agreement.
Resumo:
In variable-amplitude loading there are interaction effects between the loading history and the crack propagation rate. The most important of these effects is the retardation in the crack propagation, which may raise the life of the cracked structureconsiderably. The main objective of this research is to analyse and quantify the retardation of crack propagation in a thin plate of the high-resistance aluminium alloy 2024-T3, comparing the results obtained from the mathematical models proposed to account for the retardation effect. The specimens were tested under high-low loading sequences, for different crack sizes and overload ratios. A simplified model was developed, based on crack closure theory, that could represent the crack behaviour during retardation very well. © 1991.