150 resultados para Convex Duality
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new device was developed to hold linear transducers for transvaginal follicle aspiration. Efficacy of follicle aspiration was compared using a linear 6 MHz and a convex 5 MHz transducer. Fifty-five cows were submitted to follicle aspiration at random days of the estrous cycle. Aspirations were conducted with linear (n = 28) and convex (n = 38) transducers with 18 G needles at a negative pressure corresponding to 13 ml H2O/min. A greater number of follicles were aspirated using convex than to linear probe (12.4 versus 7.8, respectively, P < 0.05). Mean number of oocytes and recovery rates were similar for convex (5.4 and 48.6%) and linear (4.6 and 59.3%) transducers. Limited space between the linear transducer and needle guide restricted access to some portions of the ovary, reducing the number of follicles aspirated using a linear transducer. The newly developed adaptor allowed greater stability, holding the ovaries firmly against the linear transducer. This diminished mobility permitted a similar number of oocytes to be recovered with both transducers. In conclusion, this new adaptor provided a low cost alternative for routine follicle aspiration and oocyte recovery in cattle. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The non-conformal analogue of Abelian T-duality transformations relating pairs of axial and vector integrable models from the non-Abelian affine Toda family is constructed and studied in detail.
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The construction of non-Abelian affine Toda models is discussed in terms of its underlying Lie algebraic structure. It is shown that a subclass of such non-conformal two-dimensional integrable models naturally leads to the construction of a pair of actions, which share the same spectra and are related by canonical transformations.
Resumo:
By introducing an appropriate parent action and considering a perturbative approach, we establish, up to fourth order terms in the field and for the full range of the coupling constant, the equivalence between the non-commutative Yang-Mills-ChernSimons theory and the non-commutative, non-Abelian self-dual model. In doing this, we consider two different approaches by using both the Moyal star-product and the Seiberg-Witten map. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general-case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than telepaxallel gravity or general relativity.
Resumo:
The duality between the Cartesian coordinates on the Minkowski space-time and the Dirac field is investigated. Two distinct possibilities to define this duality are shown to exist. In both cases, the equations satisfied by prepotentials are of second order. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We use local quark-hadron duality to calculate the nucleon structure function as seen by neutrino and muon beams. Our result indicates a possible signal of charge symmetry violation at the parton level in the very large x region.
Resumo:
We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization. (C) 2000 Elsevier B.V. B.V. All rights reserved.