96 resultados para Chitosan. Fluency test. Surfactant. Inverse emulsions. Rheology. Apparentactivation energy. Wormlike micelles. Dynamic light scattering. Relaxation ratedistribution
Resumo:
The interaction between the nonionic surfactant C(12)E(5) and a high molar mass (M = 5.94 x 10(5)) poly(ethylene oxide) (PEG) in aqueous solution has been examined as a function of temperature by dynamic light scattering and fluorescence methods over a broad concentration range. Clusters of small surfactant micelles form within the PEO coil, leading to its extension. The hydrodynamic radius of the complex increases strongly with temperature as well as with the concentrations of surfactant and polymer. At high concentrations of the surfactant, the coil/micellar cluster complex coexists with free C(12)E(5) micelles in the solution. Fluorescence quenching measurements show a moderate micellar growth from 155 to 203 monomers in PEO-free solutions of C(12)E(5) over a wide concentration range (0.02-2.5%) at 8 degrees C. Below 0.25% C(12)E(5), the average aggregation number (N) of the micelles is smaller in the presence of PEO than in its absence. However, N increases with increasing surfactant concentration up to a plateau value of about 270 at about 1.2% (ca. 30 mM) C(12)E(5). At high surfactant concentrations, N is larger in the presence of polymer than in its absence, a finding which is connected to a significant lowering of the clouding temperature due to the PEO at these compositions. Similar results of increasing aggregation number followed by a plateau were also found at a fixed concentration of surfactant (2.5%) and varied PEO.
Resumo:
Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.
Resumo:
Dynamic light scattering has been used to investigate ternary aqueous solutions of n-dodecyl octaoxyethylene glycol monoetber (C12E8) with high molar mass poly(ethylene oxide) (PEO). The measurements were made at 20 °C, always below the cloud point temperature (Tc) of the mixed solutions. The relaxation time distributions are bimodal at higher PEO and surfactant concentrations, owing to the preacute of free surfactant micelles, which coexist with the slower component, representing the polymer coil/micellar cluster comptex. As the surfactant concentration is increased, the apparent hydrodynamic radius (RH) of the coil becomes progressively larger. It is suggested that the complex structure consists of clusters of micelles sited within the polymer coil, as previously concluded for the PEO-C12E8-water system. However. C12E8 interacts less strongly than C12E8 with PEO; at low concentrations of surfactant the complex does not contribute significantly to the total scattered intensity. The perturbation of the PEO coil radius with C12E8 is also smaller than that in the C12E8 system. The addition of PEO strongly decreases the clouding temperature of the system, as previously observed for C12E8/PEO mixtures in solution Addition of PEO up to 0.2% to C12E8 (10 wt %) solutions doss not alter the aggregation number (Nagg) of the micelles probably because the surfactant monomers are equally partitioned as bound and unbound micelles. The critical micelle concentration (cmc), obtained from the I1/I3 ratio (a measure of the dependence of the vibronic band intensities on the pyrene probe environment), does not change when PEO is added, suggesting that for neutral polymer/surfactant systems the trends in Nagg and the cmc do not unambiguously reflect the strength of interaction.
Resumo:
Pseudoternary phase diagrams, at 25 degrees C, were constructed for the systems soy bean oil (SBO)/surfactant/water, with single anionic sodium bis(2-ethylhexyl)sulfosuccinate (AOT), nonionic monoolein (MO) and mixtures of these surfactants, showing the isotropic phase of W/O microemulsions (MEs). The area of ME formation in the phase diagrams was shown to be dependent of the relative amount of surfactants, being larger for MO:AOT equals to 2:1. Rheological and dynamic light scattering (DLS) studies indicated that the viscosity of the isotropic ME phase exhibited two different behaviors depending on composition. The viscosity of dry MEs initially decreased with increasing amount of water following a dilution line in the phase diagram, i.e., a constant surfactant:SBO percentage ratio. As the water content increased the relative viscosity attained a minimum and then increased. This minimum could be related to the transition between two ME regions, L-2 and L'(2), having different characteristics. DLS measurements confirm the existence of ordinary W/O ME droplets in the L-2 region and suggest the existence of another structure in the L'(2) region. The size of the MEs droplets in L-2 phase ranges from 3.6 to 16.5 nm, depending on composition of SBO, surfactant and water. Small angle X-ray scattering (SAXS) also indicates the existence of structures with different characteristics, for the SAXS curves exhibit a typical micelle asymmetrical peak at low scattering vector q for MEs in L-2 but a symmetrical correlation peak at higher q vector in L'(2). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microemulsions (ME) containing soya phosphatidylcholine (SPC/polyoxyethylenglycerol trihydroxystearate 40 (EU)/sodium oleate (SO) as surfactant cholesterol (CHO) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant SPC/EU/SO weight ratio 3.5:3.5:3.0 by titration, in order to characterize the proportions between the components to form clear systems. The dynamic light scattering results showed that the size of the oil droplets decreases significantly with the ratio of surfactant/oil phase added to system. Depending on the composition ME system could exhibit a thixotropic behavior. The apparent viscosity increased 25- and 13-folds with cholesterol concentration for drug-free and drug-load ME, respectively. It was also verified that the octanol/aqueous buffer partition coefficient (K-O/B) of doxorubicin (DOX) was pH dependent increasing abruptly above pH 6.0. It was possible to incorporate 2.24 mg/ml of DOX into ME. The incorporation of DOX in the ME systems increased the droplets size for all surfactant concentrations used in the system. The results suggest that DOX interacts with the microstructure of the ME at the studied pH increasing significantly the drug solubility. It was possible to conclude that the investigated ME can be a very promising vehicle as drug-carrier for administration of doxorubicin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamic light scattering, surface tension, and clouding temperature have been monitored to elucidate the solution properties of mixed micelles formed between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) over a wide range of surfactant concentration and temperature. Addition of 0.1 M NaCl shifts the relaxational modes to higher frequency and lowers the clouding temperature (T-c) of the nonionic surfactant solution by about 1 degrees C compared to the salt-free system. T-c for the mixed surfactant solutions is higher than that of the binary C12E5 solutions and depends sensitively on the concentration of the two surfactants but increases only slightly when the total surfactant concentration is increased at a given molar C12E5/SDS concentration ratio. With C12E5/SDS = 5.7, for example, T-c is 46.0 and 47.5 degrees C, respectively, at 5 and 70 mM of C12E5 the mixed solutions are homogeneous and stable and contain nonspherical micelles, which are close to monodisperse over a range of surfactant concentrations and temperature. The mixed system has a lower Krafft point than binary SDS solutions and shows an approximately ideal behavior in contrast to the binary C12E5 solution. The hydrodynamic radius (RH) of the mixed micelle increases with temperature as do C12E5 micelles in the binary solutions and also with increasing C12E5/SDS ratio. At 25 degrees C, the critical micelle concentration of the mixed solution lies between those of the individual surfactants and decreases as the C12E5/SDS ratio is increased.
Resumo:
Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine-chitosan derivatives (DEAEx-CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15-CH and DEAE25-CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE-chitosan-based nanoparticles for gene delivery. © 2013 IOP Publishing Ltd.
Resumo:
Chitosan-DNA nanoparticles employed in gene therapy protocols consist of a neutralised, stoichiometric core and a shell of the excess of chitosan which stabilises the particles against further coagulation. At low ionic strength, these nanoparticles possess a high stability; however, as the ionic strength increases, it weakens the electrostatic repulsion which can play a decisive part in the formation of highly aggregated particles. In this study, new results about the effect of ionic strength on the colloidal stability of chitosan-DNA nanoparticles were obtained by studying the interaction between chitosans of increasing molecular weights (5, 10, 16, 29, 57 and 150 kDa) and calf thymus DNA. The physicochemical properties of polyplexes were investigated by means of dynamic light scattering, static fluorescence spectroscopy, optic microscopy, transmission electronic microscopy and gel electrophoresis. After subsequent addition of salt to the nanoparticles solution, secondary aggregation increased the size of the polyplexes. The nanoparticles stability decreased drastically at the ionic strengths 150 and 500 mM, which caused the corresponding decrease in the thickness of the stabilising shell. The morphologies of chitosan/DNA nanoparticles at those ionic strengths were a mixture of large spherical aggregates, toroids and rods. The results indicated that to obtain stable chitosan-DNA nanoparticles, besides molecular weight and N/P ratio, it is quite important to control the ionic strength of the solution. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Currently, there has been a growing concern for men and women with the appearance of the face and body, driven primarily by aesthetic standards set by the media. For this, the pharmaceutical and cosmetic industries have conducted numerous research projects aiming at the development of formulations that mitigate the aging and some skin disorders such as hipercromies. One of the most frequent pathologies of skin is melasma, a manifestation of hyperpigmentation caused by hipermelanogenesis symmetrical and progressive, caused usually by hormonal irregularities, exposure to sunlight and genetic factors. In addition to sunscreen, the treatment is indicated the use of depigmenting substances, among them the kojic dipalmitate (DK), which is cleaved into kojic acid (5- hydroxy-2-hydroxy-methyl-4H-piran-4-one) by esterase after absorption by the skin cells. The kojic acid inhibits the action of tyrosinase as a chelator of ions and promotes the reduction of eumelanin and its precursor monomer. To promote a controlled release and improve the stability of the system, the DK can be incorporated into multiple emulsions, that is, complex systems composed of two emulsifications, where the two types of emulsions (W/O and O/W or O/W and W/O) exist simultaneously, forming emulsions of type W/O/W or O/W/O. This work aimed to incorporate the DK in emulsion W/O/W, physical-chemical systems obtained and to evaluate the antioxidant and depigmenting action in vitro of the developed formulations. The physico-chemical characterization was performed by microscopic analysis, quantification and size distribution, determination of pH, conductivity, zeta potential and bioadhesive test of the formulations. The droplet size in accordance with the use of light microscopy and dynamic light scattering is approximately 1μm. The pH, electrical conductivity and bioadhesion have not changed with the addition... (Complete abstract click electronic access below)
Resumo:
Microemulsions (ME) containing hexadecyltrimethylammonium bromide (HTAB)/ethanol as surfactant, isopropylmyristate (IM) or butylstearate (BS) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant surfactant/cosurfactant molar ratio (1:5) by titration in order to characterize the proportions between the components to obtain clear systems. Oil in water microemulsions were prepared in a wide range of phase volume (phi). UV-vis absorption spectra of naproxen at pH 5.5 showed that the solubility of Np increases significantly in the presence of O/W ME in high phase volumes. For both, IM and BS microemulsions, the dynamic light scattering experiments showed that the size of the oil droplets remains constant in low values of phi, increasing abruptly in high phi values. Phase solubility study revealed that for both IM and BS microemulsions, the drug incorporation followed a straight-line profile in all range of phi. The data could be analyzed through the phase-separation model and the association constants (K) calculated varied from 27 to 90 M-1, depending on the pH and on the microemulsion oil phase. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The vesicle-micelle transition in aqueous mixtures of dioctadecyidimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSQ, steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T-m of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around (XDODAB) approximate to 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When XDODAB > 0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when XDODAB < 0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius RH of about 180 and 500-800 nm, respectively, as obtained by DLS measurements. (C) 2007 Elsevier B.V. All rights reserved.