29 resultados para Équation différentielle de Riccati


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We associate to an arbitrary Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer-Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The charged oscillator, defined by the Hamiltonian H = -d2/dr2+ r2 + lambda/r in the domain [0, infinity], is a particular case of the family of spiked oscillators, which does not behave as a supersingular Hamiltonian. This problem is analysed around the three regions lambda --> infinity, lambda --> 0 and lambda --> -infinity by using Rayleigh-Ritz large-order perturbative expansions. A path is found to connect the large lambda regions with the small lambda region by means of the renormalization of the series expansions in lambda. Finally, the Riccati-Pade method is used to construct an implicit expansion around lambda --> 0 which extends to very large values of Absolute value of lambda.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We suggest a method for constructing trial eigenfunctions for excited states to be used in the variational method. This method is a generalization of the one that uses a superpotential to obtain the trial functions for the ground state. The construction of an effective hierarchy of Hamiltonians is used to determine excited variational energies. The first four eigenvalues for a quartic double-well potential are calculated for several values of the potential parameter. The results are in very good agreement with the eigenvalues obtained by numerical integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the chaotic behavior of a micro-mechanical resonator with electrostatic forces on both sides is suppressed. The aim is to control the system in an orbit of the analytical solution obtained by the Method of Multiple Scales. Two control strategies are used for controlling the trajectory of the system, namely: State Dependent Riccati Equation (SDRE) Control and Optimal Linear Feedback Control (OLFC). The controls proved effectiveness in controlling the trajectory of the system. Additionally, the robustness of each strategy is tested considering the presence of parametric errors and measurement noise in control. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an application is considered of both active and passive controls, to suppression of chaotic behavior of a simple portal frame, under the excitation of an unbalanced DC motor, with limited power supply (non-ideal problem). The adopted active control strategy consists of two controls: the nonlinear (feedforward) in order to keep the controlled system in a desirable orbit, and the feedback control, which may be obtained by considering state-dependent Riccati equation control to bringing the system into the desired orbit using a magneto rheological (MR) damper. To control the electric current applied in control of the MR damper the Bouc-Wen mathematical model was used to the MR damper. The passive control was obtained by means of a nonlinear sub-structure with properties of nonlinear energy sink. Simulations showed the efficiency of both the passive control (energy pumping) and active control strategies in the suppression of the chaotic behavior. © The Author(s) 2012.