11 resultados para systems-based simulation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pumping of fluids in pipelines is the most economic and safe form of transporting fluids. That explains why in Europe there was in 1999 about 30.000 Km [7] of pipelines of several diameters, transporting millíons of cubic meters of crude oil end refined products, belonging to COCAWE (assaciation of companies of petroleum of Europe for health, environment and safety, that joint several petroleum companies). In Brazil they are about 18.000 Km of pipelines transporting millions of cubic meters of liquids and gases. In 1999, nine accidents were registered to COCAWE. Among those accidents one brought a fatal victim. The oil loss was of 171 m3, equivalent to O,2 parts per million of the total of the transported volume. Same considering the facts mentioned the costs involved in ao accident can be high. An accident of great proportions can bríng loss of human lives, severe environmental darnages, loss of drained product, loss . for dismissed profit and damages to the image of the company high recovery cost. In consonance with that and in some cases for legal demands, the companies are, more and more, investing in systems of Leak detection in pipelines based on computer algorithm that operate in real time, seeking wíth that to minimize still more the drained volumes. This decreases the impacts at the environment and the costs. In general way, all the systems based on softWare present some type of false alarm. In general a commitment exists betWeen the sensibílity of the system and the number of false alarms. This work has as objective make a review of thé existent methods and to concentrate in the analysis of a specific system, that is, the system based on hydraulic noise, Pressure Point Analyzis (PPA). We will show which are the most important aspects that must be considered in the implementation of a Leak Detection System (LDS), from the initial phase of the analysis of risks passing by the project bases, design, choice of the necessary field instrumentation to several LDS, implementation and tests. We Will make na analysis of events (noises) originating from the flow system that can be generator of false alarms and we will present a computer algorithm that restricts those noises automatically

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The power system stabilizers are used to suppress low-frequency electromechanical oscillations and improve the synchronous generator stability limits. This master thesis proposes a wavelet-based power system stabilizer, composed of a new methodology for extraction and compensation of electromechanical oscillations in electrical power systems based on the scaling coefficient energy of the maximal overlap discrete wavelet transform in order to reduce the effects of delay and attenuation of conventional power system stabilizers. Moreover, the wavelet coefficient energy is used for electric oscillation detection and triggering the power system stabilizer only in fault situations. The performance of the proposed power system stabilizer was assessed with experimental results and comparison with the conventional power system stabilizer. Furthermore, the effects of the mother wavelet were also evaluated in this work

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work is presented a new method for the determination of the orbital period (Porb) of eclipsing binary systems based on the wavelet technique. This method is applied on 18 eclipsing binary systems detected by the CoRoT (Convection Rotation and planetary transits) satellite. The periods obtained by wavelet were compared with those obtained by the conventional methods: box Fitting (EEBLS) for detached and semi-detached eclipsing binaries; and polynomial methods (ANOVA) for contact binary systems. Comparing the phase diagrams obtained by the different techniques the wavelet method determine better Porb compared with EEBLS. In the case of contact binary systems the wavelet method shows most of the times better results than the ANOVA method but when the number of data per orbital cicle is small ANOVA gives more accurate results. Thus, the wavelet technique seems to be a great tool for the analysis of data with the quality and precision given by CoRoT and the incoming photometric missions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rationalization of work in the Dentistry has been taking the professional to work for ways and systems based in the ergonomics, turning their work efficient and less tiring. Since their academic formation, the dentists surgeons are concerned with the high productivity in clinic and with the final result of the work, neglecting the way as it is executed, which reduce their work capacity and exhibits them to occupational diseases that could be minimized and/or forewarned. This research had as the main objective to investigate the knowledge of the Dentistry academics of Rio Grande do Norte Federal University concerning the Noise-induced Hearing Loss (NIHL), relating them at the noise levels that they are exposed, as well as to the preventive measures taken during the clinical activities. Was observed that 95% of the individuals know that the dentist surgeon is a professional in risk for NIHL. Among the causes of NIHL, the one that obtained the largest frequency citation was the high-speed handpieces, reminded by 92,4% of the academics. Among the students which enumerated protective measures for NIHL, 92% mentioned the use of the ear plugs, although 97% of the researched have told do not use any kind of preventive measure related to the noise. Was also observed that 96% of the academics notice the noise during the clinical attendance, what inconvenience 28,1% of them. Related the noise levels, the high-speed handpieces of the academics presented a medium value of 80,5 dB varying from 72,3 to 88,3 dB. The average of the ambient noise observed at the Integrated Clinic was about 74,8 dB. In spite of the noise levels in this research were observed below the established limits of tolerance by the legislation, they can provoke damages to the Dentistry professionals' health, or that suggests the need of an intervention and use of immediate preventive measures able to generate a healthy atmosphere of work and less risky

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a contribution to the international Verified Software Repository effort through the formal specification of the microkernel FreeRTOS real-time system. Such specification was made in abstract level making use of the B method . For thus, properties of the microkernel were chosen and selected as specification requisites, which was constructed centered at the functionalities responsible for the utilization of these properties. This properties weres setting as specification requirements. The specification was constructed modeling the function of microkernel that implement this properties. This work intended to encourage the formal verification of FreeRTOS and also contribute to the formal creation of a microkernel real-time systems, based in FreeRTOS. Furthermore, this model brings a formal documentation point view of the microkernel, demonstrating features and how this internal states is changing. Finally, this work could be an example of specification of the actual system by the B method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are authentication models which use passwords, keys, personal identifiers (cards, tags etc) to authenticate a particular user in the authentication/identification process. However, there are other systems that can use biometric data, such as signature, fingerprint, voice, etc., to authenticate an individual in a system. In another hand, the storage of biometric can bring some risks such as consistency and protection problems for these data. According to this problem, it is necessary to protect these biometric databases to ensure the integrity and reliability of the system. In this case, there are models for security/authentication biometric identification, for example, models and Fuzzy Vault and Fuzzy Commitment systems. Currently, these models are mostly used in the cases for protection of biometric data, but they have fragile elements in the protection process. Therefore, increasing the level of security of these methods through changes in the structure, or even by inserting new layers of protection is one of the goals of this thesis. In other words, this work proposes the simultaneous use of encryption (Encryption Algorithm Papilio) with protection models templates (Fuzzy Vault and Fuzzy Commitment) in identification systems based on biometric. The objective of this work is to improve two aspects in Biometric systems: safety and accuracy. Furthermore, it is necessary to maintain a reasonable level of efficiency of this data through the use of more elaborate classification structures, known as committees. Therefore, we intend to propose a model of a safer biometric identification systems for identification.