4 resultados para sensing erro
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
This study developed software rotines, in a system made basically from a processor board producer of signs and supervisory, wich main function was correcting the information measured by a turbine gas meter. This correction is based on the use of an intelligent algorithm formed by an artificial neural net. The rotines were implemented in the habitat of the supervisory as well as in the habitat of the DSP and have three main itens: processing, communication and supervision
Resumo:
In this work, we study the survival cure rate model proposed by Yakovlev et al. (1993), based on a competing risks structure concurring to cause the event of interest, and the approach proposed by Chen et al. (1999), where covariates are introduced to model the risk amount. We focus the measurement error covariates topics, considering the use of corrected score method in order to obtain consistent estimators. A simulation study is done to evaluate the behavior of the estimators obtained by this method for finite samples. The simulation aims to identify not only the impact on the regression coefficients of the covariates measured with error (Mizoi et al. 2007) but also on the coefficients of covariates measured without error. We also verify the adequacy of the piecewise exponential distribution to the cure rate model with measurement error. At the end, model applications involving real data are made