3 resultados para power series distribution
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we analyse the implications of using a power law distribution of vertice's quality in the growth dynamics of a network studied by Bianconi anel Barabási. In particular, we start studying the random networks which characterize or are related to some real situations, for instance the tide movement. In this context of complex networks, we investigate several real networks, as well as we define some important concepts in the network studies. Furthermore, we present the first scale-free network model, which was proposed by Barabási et al., and a modified model studied by Bianconi and Barabási, where now the preferential attachment incorporates the different ability (fitness) of the nodes to compete for links. At the end, our results, discussions and conclusions are presented
Resumo:
In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient
Resumo:
Considering a non-relativistic ideal gas, the standard foundations of kinetic theory are investigated in the context of non-gaussian statistical mechanics introduced by Kaniadakis. The new formalism is based on the generalization of the Boltzmann H-theorem and the deduction of Maxwells statistical distribution. The calculated power law distribution is parameterized through a parameter measuring the degree of non-gaussianity. In the limit = 0, the theory of gaussian Maxwell-Boltzmann distribution is recovered. Two physical applications of the non-gaussian effects have been considered. The first one, the -Doppler broadening of spectral lines from an excited gas is obtained from analytical expressions. The second one, a mathematical relationship between the entropic index and the stellar polytropic index is shown by using the thermodynamic formulation for self-gravitational systems