45 resultados para potássio

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: Verificar a ação da cafeína no tempo de rendimento, a taxa de esforço percebido (RPE), os níveis plasmáticos de glicose, sódio e potássio, a temperatura timpânica (Tt), o peso corporal (PC), freqüência cardíaca (FC) e concentração urinária da cafeína com a ingestão de doses de 5 e 9 mg/kg de cafeína e placebo, em provas ciclísticas sob condições de alto risco térmico. Métodos: Foram estudados 8 ciclistas treinados e aclimatizados em 3 provas de 45 km utilizando o modelo experimental e duplo-cego com randomização intra-sujeitos. Resultados: Não foram observadas diferenças significativas entre as variáveis avaliadas, entretanto o tempo de rendimento e a RPE foram menores com as doses de 5 e 9 mg/kg de cafeína que com a dose placebo. Conclusões: Estes dados indicam que as condições de calor e umidade podem ser suficientes para mascarar o benefício ergogênico da cafeína, entretanto deve-se considerar que a cafeína pode exercer influencia sobre a percepção subjetiva de esforço podendo levar à redução dos sinais de fadiga durante o exercício e conseqüente melhora do desempenho esportivo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mimosa caesalpiniaefolia Benth. is a forest species of the Mimosaceae family, recommended for recovery of degraded areas. The evaluation of vigor by biochemical tests have been an important tool in the control of seed quality programs, and the electrical conductivity and potassium leaching the most efficient in the verifying the physiological potential. The objective, therefore, to adjust the methodology of the electrical conductivity test for seeds of M. caesalpiniaefolia, for then compare the efficiency of this test with the potassium in the evaluation of seed vigor of different lots of seeds M. caesalpiniaefolia. To test the adequacy of the electrical conductivity were used different combinations of temperatures , 25 °C and 30 ºC, number of seeds , 25 and 50, periods of imbibition , 4 , 8 , 12 , 16 and 24 hours , and volumes deionized water, 50 mL and 75mL. For potassium leaching test, which was conducted from the results achieved by the methodology of the adequacy of the electrical conductivity test, to compare the efficiency of both tests , in the classification of seeds at different levels of vigor, and the period 4 hours also evaluated because the potassium leaching test can be more efficient in the shortest time . The best combination obtained in experiment of electrical conductivity is 25 seeds soaked in 50 mL deionized or distilled water for 8 hours at a temperature of 30 ° C. Data were subjected to analysis of variance, the means were compared with each other by F tests and Tukey at 5 % probability, and when necessary polynomial regression analysis was performed. The electrical conductivity test performed at period eight hour proved to be more efficient in the separation of seed lots M. caesalpiniaefolia at different levels of vigor compared to the potassium test

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to characterize the thermal profile of wood fired oven used by the red ceramic industry in Parelhas, in the Seridó region/RN, aiming to propose structural interventions that can contribute to increasing productivity and product quality, optimize wood consumption and mitigate existing losses during the burning process. The study was conducted at Cerâmica Esperança in the city of Parelhas -RN, Brazil, during the period from August 2012 to September 2013. Four treatments were performed with three replicates, ie, with, a total of 12 experimental units (burnings). In the first stage 4 treatments were performed with three replicates, totaling 12 experimental units (firings). In the second stage 2 treatments were performed with three replications, totaling 6 experimental units (firings). The physical characteristics of the wood were analyzed using standard NBR 11941 and NBR 7190 for basic density and moisture, respectively. The clay was used as a reference parameter for distinguishing treatments. For both the analysis and characterization was carried out using techniques of fluorescence X (XRF) rays, X-ray diffraction (XRD) analysis, particle size analysis (FA). In the first and second stages were monitored: the time during the firing process, the amount of wood used at each firing, the number of parts enfornadas for subsequent determination of the percentages of losses, but also product quality. To characterize the thermal profile of the oven, we measured the temperature at 15 points scored in the surface charge put into the oven. Measurements were taken every 30 minutes from preheat until the end of burning, using a pyrometer laser sight sighting from preheating until the end of burning. In the second step 12 metal cylinders distributed on the oven walls, and the cylinder end walls 8 of the furnace 2 and rollers on each side walls are installed equidistant to 17 cm from the soil and the surface 30 of the wall are installed. The cylinders distributed on the front were placed 50 cm above the furnace, and the base of the oven 20 cm distant from the ground. 10 also thermocouples were installed, and five thermocouples distributed 1.77 cm above the combustion chambers, and one thermocouple on each side, and three thermocouples in front of the oven. We carried out the measurements of the temperatures every 1 hour during the burning two hours in cooling the cylinders with a pyrometer and thermocouples for dattaloger. These were fixed with depth of 30 cm from the wall. After statistical analysis it was found that: the thermal profile of the furnace surface and at different heights was heterogeneous; and the ranges of density and moisture content of wood are within recommended for use as an energy source standards. We conclude that even at low temperatures reached during firing there was a significant production of good quality products, this is due to high concentrations of iron oxide and potassium oxide found in clay, which lowers the melting point of the piece. The average burn time for each step varied 650-2100 minutes wood consumption was on average 20 m3, product quality was on average 16% of first quality, 70% second, third and 5% to 10% loss . The distance between the wire and the surface of the oven was a significant parameter for all treatments, but with different variations, meaning that the wire should not be so generic and unique form, used as a criterion for completion of the burn process. The central part of the furnace was the area that reached higher temperature, and in a unified manner, with the highest concentration of top quality products. The ideal temperature curve, which provided the highest quality of ceramic products was achieved in the central part of the furnace

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an auxiliary tool to combat hunger by decreasing the waste of food and contributing for improvement of life quality on the population, CEASA/RN has released from August/03 to August/05 the program MESA DA SOLIDARIEDADE. Despite of the positive results of this program, that has already distributed around 226 tons of food, there is still food being thrown in the trash as the deliver of the same food in its natural form would be a health risk to those who would consume it and only the correct processing of this food can make it edible. This work has as a goal the reuse of solid residues of vegetal origin generated by the CEASA/RN, through the Program MESA DA SOLIDARIEDADE and the characterization of the product obtained so it might be used as a mineral complement in the human diet. To the collecting of samples (from September until December /2004) it was developed a methodology having as a reference the daily needs of mineral salts for infants at the age of seven to ten. The sample was packed in plastic bags and transported in an ambient temperature to the laboratory where it was selected, weighted, disinfected, fractionated and dried to 70ºC in greenhouse. The dry sample was shredded and stored in bottles previously sterilized. The sample in nature was weighted in the same proportion of the dry sample and it was obtained a uniform mass in a domestic processor. The physical-chemical analyses were carried out in triplicate in the samples in nature and in the dry product, being analyzed: pH, humidity, acidity and soluble solids according to IAL (1985), mineral salts contents (Ca, K, Na, Mg, P and Fe) determined by spectrophotometry of Atomic Absorption, caloric power through a calorimetric bomb and presence of fecal traces and E. coli through the colilert method (APHA, 1995). During this period the dry food a base of vegetables presented on average 5,06% of humidity, 4,62 of pH, acidity of 2,73 mg of citric acid /100g of sample, 51,45ºBrix of soluble solids, 2.323,50mg of K/100g, 299,06mg of Ca/100g, 293mg of Na/100g, 154,66mg of Mg/100g, 269,62mg of P/100g, 6,38mg of Fe/100g, caloric power of 3,691Kcal/g (15,502KJ/g) and is free of contamination by fecal traces and E..coli. The dry food developed in this research presented satisfactory characteristics regarding to its conservation, possessing low calories, constituting itself a good source of potassium, magnesium, sodium and iron that can be utilized as a food complement of these minerals