16 resultados para poly (ethylene glycol)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
The present work has as objective the development of ceramic pigments based in iron oxides and cobalt through the polymeric precursor method, as well as study their characteristics and properties using methods of physical, chemical, morphological and optical characterizations.In this work was used iron nitrate, and cobalt citrate as precursor and nanometer silica as a matrix. The synthesis was based on dissolving the citric acid as complexing agent, addition of metal oxides, such as chromophores ions and polymerization with ethylene glycol. The powder obtained has undergone pre-ignition, breakdown and thermal treatments at different calcination temperatures (700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C). Thermogravimetric analyzes were performed (BT) and Differential Thermal Analysis (DTA), in order to evaluate the term decomposition of samples, beyond characterization by techniques such as BET, which classified as microporous materials samples calcined at 700 ° C, 800 º C and 900 º C and non-porous when annealed at 1000 ° C and 1100 º C, X-ray diffraction (XRD), which identified the formation of two crystalline phases, the Cobalt Ferrite (CoFe2O4) and Cristobalite (SiO2), Scanning Electron Microscopy (SEM) revealed the formation of agglomerates of particles slightly rounded;and Analysis of Colorimetry, temperature of 700 °C, 800 °C and 900 °C showed a brown color and 1000 °C and 1100 °C violet
Resumo:
This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples
Resumo:
The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure
Resumo:
This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)
Resumo:
This work reports the influence of the poly (ethylene terephthalate) textile surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min. Other parameters, such as working gas composition and treatment time, were modified as the following: to the O2 plasma modified samples only the treatment time was changed (10, 20, 30, 40, 50 and 60 minutes). To the plasma with O2 and N2 only the chemical concentrations were changed. Through Capillary tests (vertical) an increase in textile wettability was observed as well as its influence on aging time and its consequence on wettability. The surface functional groups created after plasma treatments were investigated using X-ray Photoelectron Spectroscopy (XPS). The surface topography was examined by scanning electron microscope (SEM)
Resumo:
The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA
Resumo:
Since the beginning of the National Program for Production and Use of Biodiesel in Brazil, in 2004, different raw materials were evaluated for biodiesel production, trying to combine the agricultural diversity of the country to the desire to reduce production coasts. To determine the chemical composition of biodiesel produced from common vegetables oils, international methods have been used widely in Brazil. However, for analyzing biodiesel samples produced from some alternative raw materials analytical problems have been detected. That was the case of biodiesel from castor oil. Due the need to overcome these problems, new methodologies were developed using different chromatographic columns, standards and quantitative methods. The priority was simplifying the equipment configuration, realizing faster analyses, reducing the costs and facilitating the routine of biodiesel research and production laboratories. For quantifying free glycerin, the ethylene glycol was used in instead of 1,2,4-butanetriol, without loss of quality results. The ethylene glycol is a cheaper and easier standard. For methanol analyses the headspace was not used and the cost of the equipment used was lower. A detailed determination of the esters helped the deeper knowledge of the biodiesel composition. The report of the experiments and conclusions of the research that resulted in the development of alternative methods for quality control of the composition of the biodiesel produced in Brazil, a country with considerable variability of species in agriculture, are the goals of this thesis and are reported in the following pages
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated