10 resultados para optimising compiler

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

COSTA, Umberto Souza da; MOREIRA, Anamaria Martins; MUSICANTE, Martin A. Specification and Runtime Verification of Java Card Programs. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the specification and the implementation of a language of Transformations in definite Models specification MOF (Meta Object Facility) of OMG (Object Management Group). The specification uses a boarding based on rules ECA (Event-Condition-Action) and was made on the basis of a set of scenes of use previously defined. The Parser Responsible parser for guaranteeing that the syntactic structure of the language is correct was constructed with the tool JavaCC (Java Compiler Compiler) and the description of the syntax of the language was made with EBNF (Extended Backus-Naur Form). The implementation is divided in three parts: the creation of the interpretative program properly said in Java, the creation of an executor of the actions specified in the language and its integration with the type of considered repository (generated for tool DSTC dMOF). A final prototype was developed and tested in the scenes previously defined

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formal methods should be used to specify and verify on-card software in Java Card applications. Furthermore, Java Card programming style requires runtime verification of all input conditions for all on-card methods, where the main goal is to preserve the data in the card. Design by contract, and in particular, the JML language, are an option for this kind of development and verification, as runtime verification is part of the Design by contract method implemented by JML. However, JML and its currently available tools for runtime verification were not designed with Java Card limitations in mind and are not Java Card compliant. In this thesis, we analyze how much of this situation is really intrinsic of Java Card limitations and how much is just a matter of a complete re-design of JML and its tools. We propose the requirements for a new language which is Java Card compliant and indicate the lines on which a compiler for this language should be built. JCML strips from JML non-Java Card aspects such as concurrency and unsupported types. This would not be enough, however, without a great effort in optimization of the verification code generated by its compiler, as this verification code must run on the card. The JCML compiler, although being much more restricted than the one for JML, is able to generate Java Card compliant verification code for some lightweight specifications. As conclusion, we present a Java Card compliant variant of JML, JCML (Java Card Modeling Language), with a preliminary version of its compiler

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase of applications complexity has demanded hardware even more flexible and able to achieve higher performance. Traditional hardware solutions have not been successful in providing these applications constraints. General purpose processors have inherent flexibility, since they perform several tasks, however, they can not reach high performance when compared to application-specific devices. Moreover, since application-specific devices perform only few tasks, they achieve high performance, although they have less flexibility. Reconfigurable architectures emerged as an alternative to traditional approaches and have become an area of rising interest over the last decades. The purpose of this new paradigm is to modify the device s behavior according to the application. Thus, it is possible to balance flexibility and performance and also to attend the applications constraints. This work presents the design and implementation of a coarse grained hybrid reconfigurable architecture to stream-based applications. The architecture, named RoSA, consists of a reconfigurable logic attached to a processor. Its goal is to exploit the instruction level parallelism from intensive data-flow applications to accelerate the application s execution on the reconfigurable logic. The instruction level parallelism extraction is done at compile time, thus, this work also presents an optimization phase to the RoSA architecture to be included in the GCC compiler. To design the architecture, this work also presents a methodology based on hardware reuse of datapaths, named RoSE. RoSE aims to visualize the reconfigurable units through reusability levels, which provides area saving and datapath simplification. The architecture presented was implemented in hardware description language (VHDL). It was validated through simulations and prototyping. To characterize performance analysis some benchmarks were used and they demonstrated a speedup of 11x on the execution of some applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using formal methods, the developer can increase software s trustiness and correctness. Furthermore, the developer can concentrate in the functional requirements of the software. However, there are many resistance in adopting this software development approach. The main reason is the scarcity of adequate, easy to use, and useful tools. Developers typically write code and test it. These tests usually consist of executing the program and checking its output against its requirements. This, however, is not always an exhaustive discipline. On the other side, using formal methods one might be able to investigate the system s properties further. Unfortunately, specification languages do not always have tools like animators or simulators, and sometimes there are no friendly Graphical User Interfaces. On the other hand, specification languages usually have a compiler which normally generates a Labeled Transition System (LTS). This work proposes an application that provides graphical animation for formal specifications using the LTS as input. The application initially supports the languages B, CSP, and Z. However, using a LTS in a specified XML format, it is possible to animate further languages. Additionally, the tool provides traces visualization, the choices the user did, in a graphical tree. The intention is to improve the comprehension of a specification by providing information about errors and animating it, as the developers do for programming languages, such as Java and C++.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an User Interface (UI) prototypes generation process to the softwares that has a Web browser as a plataform. This process uses UI components more complex than HTML elements. To described this components more complex this work suggest to use the XICL (eXtensinble User Interface Components Language). XICL is a language, based on XML syntax, to describe UI Components and IUs. XICL promotes extensibility and reusability in the User Interface development process. We have developed two compiler. The first one compiles IMML (Interactive Message Modeling Language) code and generates XICL code. The second one compiles XICL code and generates DHTML code

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work shows a project method proposed to design and build software components from the software functional m del up to assembly code level in a rigorous fashion. This method is based on the B method, which was developed with support and interest of British Petroleum (BP). One goal of this methodology is to contribute to solve an important problem, known as The Verifying Compiler. Besides, this work describes a formal model of Z80 microcontroller and a real system of petroleum area. To achieve this goal, the formal model of Z80 was developed and documented, as it is one key component for the verification upto the assembly level. In order to improve the mentioned methodology, it was applied on a petroleum production test system, which is presented in this work. Part of this technique is performed manually. However, almost of these activities can be automated by a specific compiler. To build such compiler, the formal modelling of microcontroller and modelling of production test system should provide relevant knowledge and experiences to the design of a new compiler. In ummary, this work should improve the viability of one of the most stringent criteria for formal verification: speeding up the verification process, reducing design time and increasing the quality and reliability of the product of the final software. All these qualities are very important for systems that involve serious risks or in need of a high confidence, which is very common in the petroleum industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

COSTA, Umberto Souza da; MOREIRA, Anamaria Martins; MUSICANTE, Martin A. Specification and Runtime Verification of Java Card Programs. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2009.