3 resultados para nitride semiconductors
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed
Resumo:
In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples
Resumo:
This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered