1 resultado para measured proton-, deuteron-, alpha-spectra, (alpha)d-coin
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The main objective of the present work is to contribute to the development of the coordination chemistry of macromolecules such as resorcinarene with the synthesis and characterization of new copper complexes with chloride, vanillin and resorcinarene binders, all coordinated to phenanthroline, a biologically active molecule with important properties in biological systems. The complex [(Cu(phen))4(resvan)], was synthesized from the direct reaction of the metals with resorcinarene and generates several possibilities for coordination, which hinders its characterization. Therefore, in order to limit the coordination sites of the ligand, the complex [(Cu(phen))4(resvan)]Cl4 was formed from a new synthetic methodology. The complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl, [(Cu(phen))4(resvan)] and [(Cu(phen))4(resvan)]Cl4 were characterized by spectroscopic techniques such as IR, UV-vis and EPR. By using infrared it has been possible to demonstrate the presence of the phenanthroline ligand in the synthesized complexes, and vanillin in the complex cis- [Cu(phen)(van)]Cl and resvan ligand in the complex [(Cu(phen))4(resvan)], besides this indicating the formation of resorcinarene in the complex [(Cu(phen))4(resvan)]Cl4. The electronic spectra of these coordination compounds indicated the presence of the phenanthroline ligand, by its intense bands in the ultraviolet region. For the complex cis- [Cu(phen)(van)]Cl it still indicated the presence of the ligand vanillin based on intraligand bands of vanillin and charge transfer, LMCT. Furthermore, the spectra showed d-d bands, confirming the formation of metal compounds. The amount of copper atoms present in the complex [(Cu(phen))4(resvan)]Cl4 was estimated from a comparative analysis of the absorbances of solutions of the same concentration of [(Cu(phen))4(resvan)]Cl4 and cis- [Cu(phen)(van)]Cl, which indicates that these compounds have copper atoms in the ratio 4:1. The EPR spectra of the complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl and [(Cu(phen))4(resvan)]Cl4 showed axial profiles, while the complex [(Cu(phen))4(resvan)] showed of axial and rhombic profiles, indicating a change in the symmetry of the Cu (II) to this complex environment. The binders vanillin and resvan underwent biological assays with satisfactory results, both exhibited antioxidant activity and low toxicity, as well vanillin present antitoxoplásmico character.