3 resultados para logical semantics

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atualmente, há diferentes definições de implicações fuzzy aceitas na literatura. Do ponto de vista teórico, esta falta de consenso demonstra que há discordâncias sobre o real significado de "implicação lógica" nos contextos Booleano e fuzzy. Do ponto de vista prático, isso gera dúvidas a respeito de quais "operadores de implicação" os engenheiros de software devem considerar para implementar um Sistema Baseado em Regras Fuzzy (SBRF). Uma escolha ruim destes operadores pode implicar em SBRF's com menor acurácia e menos apropriados aos seus domínios de aplicação. Uma forma de contornar esta situação e conhecer melhor os conectivos lógicos fuzzy. Para isso se faz necessário saber quais propriedades tais conectivos podem satisfazer. Portanto, a m de corroborar com o significado de implicação fuzzy e corroborar com a implementação de SBRF's mais apropriados, várias leis Booleanas têm sido generalizadas e estudadas como equações ou inequações nas lógicas fuzzy. Tais generalizações são chamadas de leis Boolean-like e elas não são comumente válidas em qualquer semântica fuzzy. Neste cenário, esta dissertação apresenta uma investigação sobre as condições suficientes e necessárias nas quais três leis Booleanlike like — y ≤ I(x, y), I(x, I(y, x)) = 1 e I(x, I(y, z)) = I(I(x, y), I(x, z)) — se mantém válidas no contexto fuzzy, considerando seis classes de implicações fuzzy e implicações geradas por automorfismos. Além disso, ainda no intuito de implementar SBRF's mais apropriados, propomos uma extensão para os mesmos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logic courses represent a pedagogical challenge and the recorded number of cases of failures and of discontinuity in them is often high. Amont other difficulties, students face a cognitive overload to understand logical concepts in a relevant way. On that track, computational tools for learning are resources that help both in alleviating the cognitive overload scenarios and in allowing for the practical experimenting with theoretical concepts. The present study proposes an interactive tutorial, namely the TryLogic, aimed at teaching to solve logical conjectures either by proofs or refutations. The tool was developed from the architecture of the tool TryOcaml, through support of the communication of the web interface ProofWeb in accessing the proof assistant Coq. The goals of TryLogic are: (1) presenting a set of lessons for applying heuristic strategies in solving problems set in Propositional Logic; (2) stepwise organizing the exposition of concepts related to Natural Deduction and to Propositional Semantics in sequential steps; (3) providing interactive tasks to the students. The present study also aims at: presenting our implementation of a formal system for refutation; describing the integration of our infrastructure with the Virtual Learning Environment Moodle through the IMS Learning Tools Interoperability specification; presenting the Conjecture Generator that works for the tasks involving proving and refuting; and, finally to evaluate the learning experience of Logic students through the application of the conjecture solving task associated to the use of the TryLogic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valued logics, Łukasiewicz considered a third undetermined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and logical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism.