28 resultados para linha de produto de software

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Product Line (SPL) consists of a software development paradigm, whose main focus is to identify features common and variability among applications in a specific domain. An LPS is designed to attend all products requirements from its product family. These requirements and LPS may have changes over time due to several factors, such as evolution of product requirements, evolution of the market, evolution of SLP process, evolution of the technologies used to develop the products. To handle these changes, LPS should be modified and evolve in order to not become obsolete, and adapt itself to new requirements. The Changes Impact Analysis is an activity that understand and identify what consequences these changes are cause on LPS. Impact Analysis on LPS may be supported by traceability relationships, which identify relationships between artefacts created during all phases of software development. Despite the solutions of change impact analysis based on traceability for software, there is a lack of solutions for assessing the change impact analysis based on traceability for LPS, since existing solutions do not include estimates specific to the artefacts of LPS. Thus, this paper proposes a process of change impact analysis and an tool for assessing the change impact through traceability of artefacts in LPS. For this purpose, we specified a process of change impact analysis that considers artifacts produced during the development of LPS. We have also implemented a tool which allows estimating and identifying artefacts and products of LPS affected from changes in other products, changes in class, changes in features, changes between releases of LPS and artefacts related to changes in core assets and variability. Finally, the results were evaluated through metrics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The approach Software Product Line (SPL) has become very promising these days, since it allows the production of customized systems on large scale through product families. For the modeling of these families the Features Model is being widely used, however, it is a model that has low level of detail and not may be sufficient to guide the development team of LPS. Thus, it is recommended add the Features Model to other models representing the system from other perspectives. The goals model PL-AOVgraph can assume this role complementary to the Features Model, since it has a to context oriented language of LPS's, which allows the requirements modeling in detail and identification of crosscutting concerns that may arise as result of variability. In order to insert PL-AOVgraph in development of LPS's, this paper proposes a bi-directional mapping between PL-AOVgraph and Features Model, which will be automated by tool ReqSys-MDD. This tool uses the approach of Model-Driven Development (MDD), which allows the construction of systems from high level models through successive transformations. This enables the integration of ReqSys-MDD with other tools MDD that use their output models as input to other transformations. So it is possible keep consistency among the models involved, avoiding loss of informations on transitions between stages of development

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Products Lines (SPL) is a software engineering approach to developing software system families that share common features and differ in other features according to the requested software systems. The adoption of the SPL approach can promote several benefits such as cost reduction, product quality, productivity, and time to market. On the other hand, the SPL approach brings new challenges to the software evolution that must be considered. Recent research work has explored and proposed automated approaches based on code analysis and traceability techniques for change impact analysis in the context of SPL development. There are existing limitations concerning these approaches such as the customization of the analysis functionalities to address different strategies for change impact analysis, and the change impact analysis of fine-grained variability. This dissertation proposes a change impact analysis tool for SPL development, called Squid Impact Analyzer. The tool allows the implementation of change impact analysis based on information from variability modeling, mapping of variability to code assets, and existing dependency relationships between code assets. An assessment of the tool is conducted through an experiment that compare the change impact analysis results provided by the tool with real changes applied to several evolution releases from a SPL for media management in mobile devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the adoption of the software product line (SPL) approach, several benefits are achieved when compared to the conventional development processes that are based on creating a single software system at a time. The process of developing a SPL differs from traditional software construction, since it has two essential phases: the domain engineering - when common and variables elements of the SPL are defined and implemented; and the application engineering - when one or more applications (specific products) are derived from the reuse of artifacts created in the domain engineering. The test activity is also fundamental and aims to detect defects in the artifacts produced in SPL development. However, the characteristics of an SPL bring new challenges to this activity that must be considered. Several approaches have been recently proposed for the testing process of product lines, but they have been shown limited and have only provided general guidelines. In addition, there is also a lack of tools to support the variability management and customization of automated case tests for SPLs. In this context, this dissertation has the goal of proposing a systematic approach to software product line testing. The approach offers: (i) automated SPL test strategies to be applied in the domain and application engineering, (ii) explicit guidelines to support the implementation and reuse of automated test cases at the unit, integration and system levels in domain and application engineering; and (iii) tooling support for automating the variability management and customization of test cases. The approach is evaluated through its application in a software product line for web systems. The results of this work have shown that the proposed approach can help the developers to deal with the challenges imposed by the characteristics of SPLs during the testing process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E-learning, which refers to the use of Internet-related technologies to improve knowledge and learning, has emerged as a complementary form of education, bringing advantages such as increased accessibility to information, personalized learning, democratization of education and ease of update, distribution and standardization of the content. In this sense, this paper aims to develop a tool, named ISE-SPL, whose purpose is the automatic generation of E-learning systems for medical education, making use of concepts of Software Product Lines. It consists of an innovative methodology for medical education that aims to assist professors of healthcare in their teaching through the use of educational technologies, all based on computing applied to healthcare (Informatics in Health). The tests performed to validate the ISE-SPL were divided into two stages: the first was made by using a software analysis tool similar to ISE-SPL, called SPLOT and the second was performed through usability questionnaires to healthcare professors who used ISESPL. Both tests showed positive results, proving it to be an efficient tool for generation of E-learning software and useful for professors in healthcare

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increase of processing ability, storage and several kinds of communication existing such as Bluetooth, infrared, wireless networks, etc.., mobile devices are no longer only devices with specific function and have become tools with various functionalities. In the business field, the benefits that these kinds of devices can offer are considerable, because the portability allows tasks that previously could only be performed within the work environment, can be performed anywhere. In the context of oil exploration companies, mobile applications allow quick actions could be taken by petroleum engineers and technicians, using their mobile devices to avoid potential catastrophes like an unexpected stop or break of important equipment. In general, the configuration of equipment for oil extraction is performed on the work environment using computer systems in desktop platforms. After the obtained configuration, an employee goes to equipment to be configured and perform the modifications obtained on the use desktop system. This management process equipment for oil extraction takes long time and does not guarantee the maintenance in time to avoid problems. With the use of mobile devices, management and maintenance of equipment for oil extraction can be performed in a more agile time once it enables the engineer or technician oil can perform this configuration at the time and place where the request comes for example, near in the oil well where the equipment is located. The wide variety of mobile devices creates a big difficulty in developing mobile applications, since for one application can function in several types of devices, the application must be changed for each specific type of device, which makes the development quite costly. This paper defines and implements a software product line for designing sucker-rod pumping systems on mobile devices. This product line of software, called BMMobile, aims to produce products that are capable of performing calculations to determine the possible configurations for the equipment in the design suckerrod pumping, and managing the variabilities of the various products that can be generated. Besides, this work performs two evaluations. The first evaluation will verify the consistency of the products produced by the software product line. The second evaluation will verify the reuse of some products generated by SPL developed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Exception Handling (EH) is a widely used mechanism for building robust systems. In Software Product Line (SPL) context it is not different. As EH mechanisms are embedded in most of mainstream programming languages (like Java, C# and C++), we can find exception signalers and handlers spread over code assets associated to common and variable SPL features. When exception signalers and handlers are added to an SPL in an unplanned way, one of the possible consequences is the generation of faulty family instances (i.e., instances on which common or variable features signal exceptions that are mistakenly caught inside the system). In this context, some questions arise: How exceptions flow between the optional and alternative features an LPS? Aiming at providing answers to these questions, this master thesis conducted an exploratory study, based on code inspection and static analysis code, whose goal was to categorize the main ways which exceptions flow in LPSs. To support the study, we developed an static analysis tool called PLEA (Product Line Exception Analyzer) that calculates the exceptional flows of LPSs, and categorize these flows according to the features associated with handlers and signalers. Preliminary results showed that some types of exceptional flows have more potential to yield failures in exceptional behavior of SLPs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software product line engineering promotes large software reuse by developing a system family that shares a set of developed core features, and enables the selection and customization of a set of variabilities that distinguish each software product family from the others. In order to address the time-to-market, the software industry has been using the clone-and-own technique to create and manage new software products or product lines. Despite its advantages, the clone-and-own approach brings several difficulties for the evolution and reconciliation of the software product lines, especially because of the code conflicts generated by the simultaneous evolution of the original software product line, called Source, and its cloned products, called Target. This thesis proposes an approach to evolve and reconcile cloned products based on mining software repositories and code conflict analysis techniques. The approach provides support to the identification of different kinds of code conflicts – lexical, structural and semantics – that can occur during development task integration – bug correction, enhancements and new use cases – from the original evolved software product line to the cloned product line. We have also conducted an empirical study of characterization of the code conflicts produced during the evolution and merging of two large-scale web information system product lines. The results of our study demonstrate the approach potential to automatically or semi-automatically solve several existing code conflicts thus contributing to reduce the complexity and costs of the reconciliation of cloned software product lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The academic community and software industry have shown, in recent years, substantial interest in approaches and technologies related to the area of model-driven development (MDD). At the same time, continues the relentless pursuit of industry for technologies to raise productivity and quality in the development of software products. This work aims to explore those two statements, through an experiment carried by using MDD technology and evaluation of its use on solving an actual problem under the security context of enterprise systems. By building and using a tool, a visual DSL denominated CALV3, inspired by the software factory approach: a synergy between software product line, domainspecific languages and MDD, we evaluate the gains in abstraction and productivity through a systematic case study conducted in a development team. The results and lessons learned from the evaluation of this tool within industry are the main contributions of this work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Checking the conformity between implementation and design rules in a system is an important activity to try to ensure that no degradation occurs between architectural patterns defined for the system and what is actually implemented in the source code. Especially in the case of systems which require a high level of reliability is important to define specific design rules for exceptional behavior. Such rules describe how exceptions should flow through the system by defining what elements are responsible for catching exceptions thrown by other system elements. However, current approaches to automatically check design rules do not provide suitable mechanisms to define and verify design rules related to the exception handling policy of applications. This paper proposes a practical approach to preserve the exceptional behavior of an application or family of applications, based on the definition and runtime automatic checking of design rules for exception handling of systems developed in Java or AspectJ. To support this approach was developed, in the context of this work, a tool called VITTAE (Verification and Information Tool to Analyze Exceptions) that extends the JUnit framework and allows automating test activities to exceptional design rules. We conducted a case study with the primary objective of evaluating the effectiveness of the proposed approach on a software product line. Besides this, an experiment was conducted that aimed to realize a comparative analysis between the proposed approach and an approach based on a tool called JUnitE, which also proposes to test the exception handling code using JUnit tests. The results showed how the exception handling design rules evolve along different versions of a system and that VITTAE can aid in the detection of defects in exception handling code

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The software systems development with domain-specific languages has become increasingly common. Domain-specific languages (DSLs) provide increased of the domain expressiveness, raising the abstraction level by facilitating the generation of models or low-level source code, thus increasing the productivity of systems development. Consequently, methods for the development of software product lines and software system families have also proposed the adoption of domain-specific languages. Recent studies have investigated the limitations of feature model expressiveness and proposing the use of DSLs as a complement or substitute for feature model. However, in complex projects, a single DSL is often insufficient to represent the different views and perspectives of development, being necessary to work with multiple DSLs. In order to address new challenges in this context, such as the management of consistency between DSLs, and the need to methods and tools that support the development with multiple DSLs, over the past years, several approaches have been proposed for the development of generative approaches. However, none of them considers matters relating to the composition of DSLs. Thus, with the aim to address this problem, the main objectives of this dissertation are: (i) to investigate the adoption of the integrated use of feature models and DSLs during the domain and application engineering of the development of generative approaches; (ii) to propose a method for the development of generative approaches with composition DSLs; and (iii) to investigate and evaluate the usage of modern technology based on models driven engineering to implement strategies of integration between feature models and composition of DSLs

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, the importance of using software processes is already consolidated and is considered fundamental to the success of software development projects. Large and medium software projects demand the definition and continuous improvement of software processes in order to promote the productive development of high-quality software. Customizing and evolving existing software processes to address the variety of scenarios, technologies, culture and scale is a recurrent challenge required by the software industry. It involves the adaptation of software process models for the reality of their projects. Besides, it must also promote the reuse of past experiences in the definition and development of software processes for the new projects. The adequate management and execution of software processes can bring a better quality and productivity to the produced software systems. This work aimed to explore the use and adaptation of consolidated software product lines techniques to promote the management of the variabilities of software process families. In order to achieve this aim: (i) a systematic literature review is conducted to identify and characterize variability management approaches for software processes; (ii) an annotative approach for the variability management of software process lines is proposed and developed; and finally (iii) empirical studies and a controlled experiment assess and compare the proposed annotative approach against a compositional one. One study a comparative qualitative study analyzed the annotative and compositional approaches from different perspectives, such as: modularity, traceability, error detection, granularity, uniformity, adoption, and systematic variability management. Another study a comparative quantitative study has considered internal attributes of the specification of software process lines, such as modularity, size and complexity. Finally, the last study a controlled experiment evaluated the effort to use and the understandability of the investigated approaches when modeling and evolving specifications of software process lines. The studies bring evidences of several benefits of the annotative approach, and the potential of integration with the compositional approach, to assist the variability management of software process lines

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many challenges have been imposed on the middleware to support applications for digital TV because of the heterogeneity and resource constraints of execution platforms. In this scenario, the middleware must be highly configurable so that it can be customized to meet the requirements of applications and underlying platforms. This work aims to present the GingaForAll, a software product line developed for the Ginga - the middleware of the Brazilian Digital TV (SBTVD). GingaForAll adds the concepts of software product line, aspect orientation and model-driven development to allow: (i) the specification of the common characteristics and variables of the middleware, (ii) the modularization of crosscutting concerns - both mandatory and concepts variables - through aspects, (iii) the expression of concepts as a set of models that increase the level of abstraction and enables management of various software artifacts in terms of configurable models. This work presents the architecture of the software product line that implements such a tool and architecture that supports automatic customization of middleware. The work also presents a tool that implements the process of generating products GingaForAll

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Product derivation tools are responsible for automating the development process of software product lines. The configuration knowledge, which is responsible for mapping the problem space to the solution space, plays a fundamental role on product derivation approaches. Each product derivation approach adopts different strategies and techniques to manage the existing variabilities in code assets. There is a lack of empirical studies to analyze these different approaches. This dissertation has the aim of comparing systematically automatic product derivation approaches through of the development of two different empirical studies. The studies are analyzed under two perspectives: (i) qualitative that analyzes the characteristics of approaches using specific criteria; and (ii) quantitative that quantifies specific properties of product derivation artifacts produced for the different approaches. A set of criteria and metrics are also being proposed with the aim of providing support to the qualitative and quantitative analysis. Two software product lines from the web and mobile application domains are targets of our study

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)