5 resultados para linear weighting methods
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
This research aimed to analyse the effect of different territorial divisions in the random fluctuation of socio-economic indicators related to social determinants of health. This is an ecological study resulting from a combination of statistical methods including individuated and aggregate data analysis, using five databases derived from the database of the Brazilian demographic census 2010: overall results of the sample by weighting area. These data were grouped into the following levels: households; weighting areas; cities; Immediate Urban Associated Regions and Intermediate Urban Associated Regions. A theoretical model related to social determinants of health was used, with the dependent variable Household with death and as independent variables: Black race; Income; Childcare and school no attendance; Illiteracy; and Low schooling. The data was analysed in a model related to social determinants of health, using Poisson regression in individual basis, multilevel Poisson regression and multiple linear regression in light of the theoretical framework of the area. It was identified a greater proportion of households with deaths among those with at least one black resident, lower-income, illiterate, who do not attend or attended school or day-care and less educated. The analysis of the adjusted model showed that most adjusted prevalence ratio was related to Income, where there is a risk value of 1.33 for households with at least one resident with lower average personal income to R$ 655,00 (Brazilian current). The multilevel analysis demonstrated that there was a context effect when the variables were subjected to the effects of areas, insofar as the random effects were significant for all models and with different prevalence rates being higher in the areas with smaller dimensions - Weighting areas with coefficient of 0.035 and Cities with coefficient of 0.024. The ecological analyses have shown that the variable Income and Low schooling presented explanatory potential for the outcome on all models, having income greater power to determine the household deaths, especially in models related to Immediate Urban Associated Regions with a standardized coefficient of -0.616 and regions intermediate urban associated regions with a standardized coefficient of -0.618. It was concluded that there was a context effect on the random fluctuation of the socioeconomic indicators related to social determinants of health. This effect was explained by the characteristics of territorial divisions and individuals who live or work there. Context effects were better identified in the areas with smaller dimensions, which are more favourable to explain phenomena related to social determinants of health, especially in studies of societies marked by social inequalities. The composition effects were better identified in the Regions of Urban Articulation, shaped through mechanisms similar to the phenomenon under study.
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities