3 resultados para learning analytics framework

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Logic courses represent a pedagogical challenge and the recorded number of cases of failures and of discontinuity in them is often high. Amont other difficulties, students face a cognitive overload to understand logical concepts in a relevant way. On that track, computational tools for learning are resources that help both in alleviating the cognitive overload scenarios and in allowing for the practical experimenting with theoretical concepts. The present study proposes an interactive tutorial, namely the TryLogic, aimed at teaching to solve logical conjectures either by proofs or refutations. The tool was developed from the architecture of the tool TryOcaml, through support of the communication of the web interface ProofWeb in accessing the proof assistant Coq. The goals of TryLogic are: (1) presenting a set of lessons for applying heuristic strategies in solving problems set in Propositional Logic; (2) stepwise organizing the exposition of concepts related to Natural Deduction and to Propositional Semantics in sequential steps; (3) providing interactive tasks to the students. The present study also aims at: presenting our implementation of a formal system for refutation; describing the integration of our infrastructure with the Virtual Learning Environment Moodle through the IMS Learning Tools Interoperability specification; presenting the Conjecture Generator that works for the tasks involving proving and refuting; and, finally to evaluate the learning experience of Logic students through the application of the conjecture solving task associated to the use of the TryLogic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital games have been used as aiding tool for transmission of knowledge, allowing faster dissemination of content. Using this strategy of disseminating logical reasoning development for basic school children can be the motivating gear that helps in the learning process for any area. In this context, many games can be created and provided for the use of teacher and student. However, the complexity of construction of these games becomes a obstacle which can, often, prevent their construction. Thus, this paper presents a framework for creating games, which teach programming logic, presenting from their conception to their integration with the visual programming environment (Blockly) and scenarios created in HTML5.