2 resultados para laserspectroscopy, laser systems, beryllium, nuclear charge radius, isotope shift measurement
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study aimed to identify and review of the conceptual differences presented by authors of books, focusing on the theme of electronic configuration. It shows the changing concepts of electronic configuration, its implications for the cognitive development of students and their relations with the contemporary world. We identified possible obstacles in books generated in the search for simplifications, situations of different concepts of energy in the electron configuration for sublevels. For this analysis was carried out in several books, and some other general chemistry and inorganic chemistry without distinguishing between level of education, whether secondary or higher. It was found that some books for school books corroborated with higher education, others do not. To check the consistency of what was discussed, it was a survey of 30 teachers, it was found divergent points of responses, particularly with respect to the energy sublevels and authorship of the diagram which facilitated the electron configuration. It was found that the total 22professores, ie, 73,33% answered correctly on the energy sublevel more calcium (Ca) and 80%, ie, 24 teachers responded incorrectly on the iron. As for the authorship of the diagram used to facilitate the electronic configuration, we obtained 93, 33% of teachers indicated that they followed a diagram, and this was called "Diagram of Linus Pauling," teacher 01, 3,33%, indicated that the diagram was authored by Madelung and 01, 3,33%, did not respond to question. Was observed that it is necessary a more detailed assessment of ancient writings, as the search for simplifications and generalizations, not so plausible, lead to errors and consequences negative for understanding the properties of many substances. It was found that quantum mechanics combined with spectroscopic data should be part of a more thorough analysis, especially when it extends situations atoms monoelectronicpolieletrônicos to describe atoms, because factors such as effective nuclear charge and shielding factor must be taken into consideration, because interactions there is inside an atom, described by a set ofquantum numbers, sometimes not taken into account
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry