5 resultados para hydroxyapatite

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report shows 2232 times purification of a βNAcetylhexosaminidase from hepatic extracts from the sea mammal Sotalia fluviatilis homogenate with final recovery of 8,4%. Sequenced steps were utilized for enzyme purification: ammonium sulfate fractionation, Biogel A 1.5 m, chitin, DEAESepharose and hydroxyapatite chromatographies. The protein molecular mass was estimated in 10 kDa using SDSPAGE and confirmed by MALDITOF. It was found to have an optimal pH of 5.0 and a temperature of 60°C. Using pnitrophenylNAcetylβDglycosaminide apparent Km and Vmax values were of 2.72 mM and 0.572 nmol/mg/min, respectively. The enzyme was inhibited by mercury chloride (HgCl2) and sodium dodecil sulfate (SDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to assess the effectiveness and adverse effects on dental enamel caused by nightguard vital bleaching with 10% carbamide peroxide. This was accomplished through the interaction of researchers from different areas such as dentistry, materials engineering and physics. Fifty volunteers took part in the doubleblind randomized controlled clinical trial. They were allocated to an experimental group that used Opalescence PF 10% (OPA) and a control group that used a placebo gel (PLA). Fragments of human dental enamel from the vestibular surface of healthy premolars, extracted for orthodontic reasons, were fixed to the vestibular surface of the first upper molars of the volunteers for in situ observation. Bleaching was performed at night for 21 days. The observation periods included Baseline (BL), T0 (21 days), T30 (30 days after treatment) and T180 (180 days after treatment, only for the OPA group). Tooth color was assessed by comparing it with the Vita® scale and by the degree of satisfaction expressed by the volunteer. We also assessed adverse clinical effects, dental sensitivity and gingival bleeding. The study of adverse effects on enamel was conducted in vivo and in situ, using the DIAGNOdent® laser fluorescence device to detect mineral loss. Scanning electron microscopy (SEM) was used to check for superficial morphological alterations, energy dispersive spectrophotometry (EDS) to semiquantitatively assess chemical composition using the Ca/P ratio, and the x-ray diffraction (XRD) technique to observe alterations in enamel microstructure. The results showed that nightguard vital bleaching with 10% carbamide peroxide was effective in 96% of the cases, versus 8% for the PLA group. Dental sensitivity was present in 36% (9/25) of the cases. There was no significant association between gingival bleeding and the type of gel used (p = 1.00). In vivo laser fluorescence analysis showed no difference in values for the control group, whereas in the OPA group there was a statistically significant difference between baseline values in relation to the subsequent periods (p<0.01), with lower mean values for post-bleaching times. There was a significant difference between the groups for times T0 and T30. Micrographic analysis showed no enamel surface alterations related to the treatment performed. No significant alteration in Ca/P ratio was observed in the OPA group (p = 0.624) or in the PLA group (p = 0.462) for each of the observation periods, nor between the groups studied (p=0.102). The XRD pattern for both groups showed the presence of three-phase Hydroxyapatite according to JCPDS files (9-0432[Ca5(PO4)3(OH)], 18-0303[Ca3(PO4)2.xH2O] and 25-0166[Ca5(PO4)3(OH, Cl, F)]). No other peak associated to other phases was found, independent of the group analyzed, which reveals there was no disappearance, nucleation or phase transformation. Neither was there any alteration in peak pattern location. With the methodology and protocol used in this study, nightguard vital bleaching with 10% carbamide peroxide proved to be an effective and safe procedure for dental enamel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, composites were prepared using high energy mechanical milling from the precursors hydroxyapatite - HAp (Ca10(PO4)6(OH)2) and metallic iron ( -Fe ). The main goal here is to study composites in order to employ them in magnetic hyperthermia for cancer therapy. The produced samples were characterized by X-ray di raction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), magnetization curves as a function of applied eld (MxH), and nally measurements of magnetic hyperthermia. The XRD patterns of the milled samples HAp/Fe revealed only the presence of precursor materials. The SEM showed clusters with irregular shapes. The magnetization curves indicated typical cases of weak ferromagnetic behavior. For samples submitted to grinding and annealing, the identi ed phases were: HAp (Ca10(PO4)6(OH)2), hematite (Fe2O3) and Calcium Iron Phosphate (Ca9Fe(PO4)7). Analyzing the results of MxH, there was a reduction of the saturation magnetization, given that the Fe was incorporated into HAp. Hysteresis curves obtained at 300 K are characteristics of samples possessing over a phase. At 77 K, the behavior of the hysteresis curve is in uenced by the presence of hematite, which is antiferromagnetic. Already at T = 4.2 K, it is observed a weak ferromagnetic behavior. Furthermore, there is the e ect of exchange bias. Regarding the magnetic hyperthermia, the results of temperature measurements as a function of the alternating eld are promising for applications in magnetic hyperthermia and other biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report shows 2232 times purification of a βNAcetylhexosaminidase from hepatic extracts from the sea mammal Sotalia fluviatilis homogenate with final recovery of 8,4%. Sequenced steps were utilized for enzyme purification: ammonium sulfate fractionation, Biogel A 1.5 m, chitin, DEAESepharose and hydroxyapatite chromatographies. The protein molecular mass was estimated in 10 kDa using SDSPAGE and confirmed by MALDITOF. It was found to have an optimal pH of 5.0 and a temperature of 60°C. Using pnitrophenylNAcetylβDglycosaminide apparent Km and Vmax values were of 2.72 mM and 0.572 nmol/mg/min, respectively. The enzyme was inhibited by mercury chloride (HgCl2) and sodium dodecil sulfate (SDS)