9 resultados para electric current
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype
Resumo:
Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work
Resumo:
This research this based on the seminar on Use of Natural Fluids in Refrigeration and Air-Conditioning Systems conducted in 2007 in Sao Paulo. The event was inserted in the National Plan for Elimination of CFCs, coordinated by the Ministry of Environment and implemented by the United Nations Development Programme (UNDP). The objective of this research is analyze the performance of the hydrocarbons application as zeotropic mixtures in domestic refrigerator and validate the application of technical standards for pull down and cycling (on-off) tests to the mixture R290/R600a (50:50) in domestic refrigerator. It was first developed an computational analysis of R290/R600a (50:50) compared to R134a and other mass fractions of the hydrocarbons mixtures in the standard ASHRAE refrigeration cycle in order to compare the operational characteristics and thermodynamic properties of fluids based on the software REFPROP 6.0. The characteristics of the Lorenz cycle is presented as an application directed to zeotropic mixtures. Standardized pull down and cycling (on-off) tests were conducted to evaluate the performance of the hydrocarbons mixture R290/R600a (50:50) as a drop-in alternative to R134a in domestic refrigerator of 219 L. The results showed that the use of R290/R600a (50:50) with a charge of refrigerant reduced at 53% compared to R134a presents reduced energy performance than R134a. The COP obtained with hydrocarbon mixture was about 13% lower compared to R134a. Pull down times in the refrigerator compartments for fluids analyzed were quite close, having been found a 4,7% reduction in pull down time for the R290/R600a compared to R134a, in the freezer compartment. The data indicated a higher consumption of electric current from the refrigerator when operating with the R290/R600a. The values were higher than about 3% compared to R134a. The charge of 40 g of R290/R600a proved very low for the equipment analyzed
Resumo:
Many applications require that the plasma discharge is produced apart from the surface to be processed, thus preventing damage caused by bombardment and/or plasma radiation. In the post-discharge regime in various applications thermally sensitive materials can be used. In this work, active species produced by discharge and post-discharge hollow cathode were diagnosed by optical emission spectroscopy and mass spectrometry. The discharge was produced with the gases Ar and Ar - N2 gas flow ranging from 1 to 6 cm3/min and electric current between 150 to 600 mA. It was estimated that the ion density inside the hollow cathode, with 2 mm diameter ranged between 7.71 and 14.1 x 1015 cm-3. It was observed that the gas flow and the electric current changes the emission intensity of Ar and N2 species. The major ionic species detected by quadrupole mass spectrometry were Ar+ and N2+. The ratio of optical emission intensities of N2(1 +)/Ar(811 nm) was related to the partial pressure of N2 after the hollow cathode discharge at low pressure
Resumo:
Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed
Resumo:
There is nowadays a growing demand for located cooling and stabilization in optical and electronic devices, haul of portable systems of cooling that they allow a larger independence in several activities. The modules of thermoelectrical cooling are bombs of heat that use efect Peltier, that consists of the production of a temperature gradient when an electric current is applied to a thermoelectrical pair formed by two diferent drivers. That efect is part of a class of thermoelectrical efcts that it is typical of junctions among electric drivers. The modules are manufactured with semiconductors. The used is the bismuth telluride Bi2Te3, arranged in a periodic sequence. In this sense the idea appeared of doing an analysis of a system that obeys the sequence of Fibonacci. The sequence of Fibonacci has connections with the golden proportion, could be found in the reproductive study of the bees, in the behavior of the light and of the atoms, as well as in the growth of plants and in the study of galaxies, among many other applications. An apparatus unidimensional was set up with the objective of investigating the thermal behavior of a module that obeys it a rule of growth of the type Fibonacci. The results demonstrate that the modules that possess periodic arrangement are more eficient
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype