3 resultados para diffusion coefficients
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In the area of food dehydration, drying of vegetables has a very representative position, it has the objective to preserve the surplus of crops and began with sun drying. Among the vegetable is the carrot, which had its origin in Southeast Asia and in Brazil is a vegetable cultivated enough. The principal objective of this works is to find alternative ways for the conservation of carrot slices by osmotic dehydration with additional drying in heart. Were initially defined the best conditions of pre-osmotic dehydration (temperature, immersion time, type of osmotic solution) based on the results of humidity loss, solid gain, weight reduction and efficiency ratio of predehydrated carrots slices. The osmotic solutions used were composed by NaCl (10%) and sucrose (50 ° Brix) named DO1 and sucrose (50 ° Brix) called DO2. Was made experiment of pre-osmotic dehydration of carrot slices in two temperature levels, with complementary drying in heart with air circulation at 70 º C. Sensory analysis was performed and the study of slices dehydration osmotically and the slices without osmotic treatment. The best results were obtained with the solution DO1 60°C with immersion time of 60 min. The drying of carrot slices presented period of constant rate and decreasing rate. The osmotic pre-treatment reduced the initial humidity of carrot slices, reducing the time to the product to reach the same humidity content. Fick's model, considering the shrinkage, and the Page s model, adapt satisfactorily to experimental datas, allowing the determination of effective diffusion coefficients, consistent with the references. The results of sensory analysis of dry product, showed greater acceptance of sliced carrots with osmotic treatment
Resumo:
Discrepancies between classical model predictions and experimental data for deep bed filtration have been reported by various authors. In order to understand these discrepancies, an analytic continuum model for deep bed filtration is proposed. In this model, a filter coefficient is attributed to each distinct retention mechanism (straining, diffusion, gravity interception, etc.). It was shown that these coefficients generally cannot be merged into an effective filter coefficient, as considered in the classical model. Furthermore, the derived analytic solutions for the proposed model were applied for fitting experimental data, and a very good agreement between experimental data and proposed model predictions were obtained. Comparison of the obtained results with empirical correlations allowed identifying the dominant retention mechanisms. In addition, it was shown that the larger the ratio of particle to pore sizes, the more intensive the straining mechanism and the larger the discrepancies between experimental data and classical model predictions. The classical model and proposed model were compared via statistical analysis. The obtained p values allow concluding that the proposed model should be preferred especially when straining plays an important role. In addition, deep bed filtration with finite retention capacity was studied. This work also involves the study of filtration of particles through porous media with a finite capacity of filtration. It was observed, in this case, that is necessary to consider changes in the boundary conditions through time evolution. It was obtained a solution for such a model using different functions of filtration coefficients. Besides that, it was shown how to build a solution for any filtration coefficient. It was seen that, even considering the same filtration coefficient, the classic model and the one here propposed, show different predictions for the concentration of particles retained in the porous media and for the suspended particles at the exit of the media
Resumo:
Vegetables drying plays an important role in the field of food dehydration, being a very old practice that was originated from sun drying items of food in order to preserve them to be consumed during the periods of scarcity. One of these vegetables is the tomato, that was originally grown in South America. Tomatoes are easily perishable after being picked up from the tree and this makes the process of tomato dehydration a challenge due to the high amount of water (95%) contained in them. The present research work was mainly intended to develop alternative processes for tomato conservation, by drying slices of skinned and unskinned tomatoes in the in natura form or in the osmotically pre-dehydrated form. Firstly, the best conditions of the osmotic pre-dehydration process were defined including temperature, immersion time and concentration of the osmotic solution, based on the results of water loss, solids gain and weigh reduction of the pre-dehydration tomatoes at different processing conditions. The osmotic solution used was made up of NaCl (5 and 10%) and sucrose (25 and 35%) at different combinations. For a fixed conditions of osmotic pre-dehydration, the drying tests of the pre-processed and in natura tomatoes were carried out in a stove with air circulation and a convective dryer with trays, at two levels of temperature. The sensorial analysis of the osmotically pre-treated and unskinned dehydrated tomatoes was carried out as well as a study on the their shelf-live. The results obtained showed that the drying of the tomatoes took place as a result of the internal control of the water transport, and did not show a constant rate, while two distinct periods of the decreasing phase were observed. The osmotic pre treatment substancially reduced the initial amount of humidity in the tomatoes, thus reducing the necessary time for the product to attain levels of intermediate humidity. The impermeability of the tomato skin was identified as well as the unfavorable influence of the pre-treatment on the unskinned tomatoes, whose solid gain brought about a decrease in the water activity with subsequent reduction of the drying rate. Despite the various simplifications carried out during the development of this study, the proposed diffusive model adjusted to the experimental data satisfactorily, thus making it possible to determine the effective coefficients of diffusion, whose results were consistent and compatible with those found in the current literature. Concerning the higher rates of evaporation and the lowest processing time, the best results were obtained in the drying of the unskinned, in natura tomatoes and of the skinned, pre-dehydrated tomatoes, at 60ºC, both processed in the convective drier. The results of the sensorial analysis of the unskinned and pre-treated product did not prove to be satisfactory. Regarding the shelf-live of the tomatoes, for a period of 45 days, no physicochemical or microbiological alteration of the product was noted