43 resultados para conteúdo de água do solo
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Leptospirosis is a worldwide zoonosis of considerable medical and economical importance that affects humans in both urban and rural contexts, as well as domestic animals and wild fauna. Leptospira interrogans is the causative agent and is transmitted to humans by indirect contact with contaminated soil or water. The clinical syndromes include sub clinical infection, self-limited anicteric febrile illness, and severe and potentially fatal illness, known as Weil´s syndrome. In developed countries, leptospirosis is related to occupational or recreational activities while in developing countries, outbreaks occur during floods. In those regions, traditional strategies to prevent the transmission are difficulties to be implemented because of costs and lack of community acceptance. In addition, no efficient vaccine is available for human use. Several studies have suggested that chemoprophylaxis with doxycycline pre and post-exposure may be effective to prevent leptospirosis. Leptospirosis has been reported in rural areas of the State of Rio Grande do Norte, Brazil since 1985 in rice farmers who present the anicteric illness. The disease cause great social and economics impact. The study was conducted in São Miguel where an epidemic of leptospirosis in rice farmers was reported. The main objective was to determine the efficacy of doxycycline in preventing Leptospira exposure. A taxa de soroprevalência de leptospirose na população estudada antes e após a colheita foi de 14,2% (n=22) e de 16.6% (n=27) respectivamente. Anti-Leptospira serology was determined for 61 subjects in two instances, pre and post-exposure to potential contaminated water. There was an increased risk of 29.0 per cent in acquiring infection for individuals that did not use doxycycline. In addition, an increased risk of 30.0 % observed in farmers who did not use protection when exposed to Leptospira. The adhesion to preventive chemoprophylaxis was 55.7%. Therefore doxycycline, under specific circunstances appears to be an effective alternative to protect against leptosprirosis infection. A large sample composed of individuals to adhere to preventive therapy is needed to define time, dosage and length of use of doxycycline in this area
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base
Resumo:
In northeastern semiarid, seasonality on precipitation temporal distribution, high intensity storm events and inadequate management of native vegetation can promote soil erosion. Vegetation removal causes soil surface exposure, reduces soil water storage capacity and can be the source degradation processes. In this context, this approach aims to analyze water and soil erosion processes on a 250 m2 undisturbed experimental plot with native vegetation, slope 2.5% by using 2006 and 2007 monitoring data. The site was instrumented to monitor rainfall, overland flow runoff and erosion by using a 5 m³ tank downstream the plot. Soil erosion monitoring was made by transported sediment and organic matter collection after each event. Field infiltration experiments were made at 16 points randomly distributed within the plot area by using a constant head infiltrometer during drought and rainy seasons, respectively. Infiltration data revealed high spatial and temporal variability. It was observed that during the beginning of the rainy period, 77% of the events showed runoff coefficient less than 0.05. As the rainy season began, soil water increase produced annual species germination. High intensity storms resulted in runoff coefficients varying between 0.33 and 0.42. Once the annual species was established, it was observed that approximately 39% of the events produced no runoff, which reflects an increase on soil water retention capacity caused by the vegetation. A gradual runoff reduction during the rainy season emphasizes the effect of vegetative density increase. Soil erosion observed data allowed to fit an empirical relationship involving soil loss and precipitation height, which was used to analyze the plot installation impact on soil erosion. Observed soil loss in 2006 and 2007 was 230 Kg/ha and 54 Kg/ha, respectively
Resumo:
The study that resulted in this dissertation was developed at OU RNCE PETROBRAS, in Natal, which implemented a project of rational use and reuse of water, including use of wastewater from a Sewage Treatment Plant (STP) already in place, diluted with water from own wells for irrigation of green area of the building complex corporate enterprise. Establish a methodology that can serve as guidelines for future projects controlled reuse of water like this was the objective of this research. Been proposed, implemented and evaluated three instruments of sanitary and environmental control: 1) adaptation of sewage treatment plant and quality control of the treated effluent 2) analysis of soil-nutrient interaction in the irrigated area, 3) knowledge of the local hydrogeology, especially with regard to the direction of flow of the aquifer and location of collection wells of Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN) situated in the surroundings. These instruments have proven sufficient and appropriate to ensure the levels of sanitary and environmental control proposed and studied, which were: a) control of water quality off the STP and the output of the irrigation reservoir, b) control of water quality sub surface soil and assessment of progress on soil composition, c) assessment of water quality in the aquifer. For this, we must: 1) establishing the monitoring plan of the STP and its effluent quality sampling points and defining the parameters of analysis, improve the functioning of that identifying the adequacy of flow and screening as the main factors of operational control, and increase the efficiency of the station to a relatively low cost, using additional filters, 2) propose, implement and adapt simple collectors to assess the quality of water percolating into the soil of the irrigated area, 3) determine the direction of groundwater flow in the area study and select the wells for monitoring of the aquifer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).
Resumo:
Leptospirosis is a worldwide zoonosis of considerable medical and economical importance that affects humans in both urban and rural contexts, as well as domestic animals and wild fauna. Leptospira interrogans is the causative agent and is transmitted to humans by indirect contact with contaminated soil or water. The clinical syndromes include sub clinical infection, self-limited anicteric febrile illness, and severe and potentially fatal illness, known as Weil´s syndrome. In developed countries, leptospirosis is related to occupational or recreational activities while in developing countries, outbreaks occur during floods. In those regions, traditional strategies to prevent the transmission are difficulties to be implemented because of costs and lack of community acceptance. In addition, no efficient vaccine is available for human use. Several studies have suggested that chemoprophylaxis with doxycycline pre and post-exposure may be effective to prevent leptospirosis. Leptospirosis has been reported in rural areas of the State of Rio Grande do Norte, Brazil since 1985 in rice farmers who present the anicteric illness. The disease cause great social and economics impact. The study was conducted in São Miguel where an epidemic of leptospirosis in rice farmers was reported. The main objective was to determine the efficacy of doxycycline in preventing Leptospira exposure. A taxa de soroprevalência de leptospirose na população estudada antes e após a colheita foi de 14,2% (n=22) e de 16.6% (n=27) respectivamente. Anti-Leptospira serology was determined for 61 subjects in two instances, pre and post-exposure to potential contaminated water. There was an increased risk of 29.0 per cent in acquiring infection for individuals that did not use doxycycline. In addition, an increased risk of 30.0 % observed in farmers who did not use protection when exposed to Leptospira. The adhesion to preventive chemoprophylaxis was 55.7%. Therefore doxycycline, under specific circunstances appears to be an effective alternative to protect against leptosprirosis infection. A large sample composed of individuals to adhere to preventive therapy is needed to define time, dosage and length of use of doxycycline in this area
Resumo:
The retail fuel stations are partially or potentially polluters and generators of environmental accidents, potentially causing contamination of underground and surface water bodies, soil and air. Leaks in fuel retail stations´ underground storage systems are often detected in Brazil and around the world. Monoaromatic hydrocarbons, BTEX (benzene, toluene, ethylbenzene and xylenes) and polycyclic aromatic hydrocarbons (PAHs) are an indication of the presence of contamination due to its high toxicity. This paper presents a case study of contamination in a Fuel Retail Station by petroleum derivative products in the city of Natal. For identification and quantification of the hydrocarbons, EPA analytical methods were used. The values of benzene quantified by EPA method 8021b CG-PID/FID, ranged from 1.164 to 4.503 mg.Kg-1 in soil samples, and from 12.10 to 27,639 μg.L-1 in underground water samples. Among the PAHs, naphthalene and anthracene showed the most significant results in soil samples, 0.420 to 15.46 mg.Kg-1 and 0.110 to 0,970 mg.Kg-1, respectively. In underground water samples, the results for Naphthalene varied between 0.759 and 614.7 μg.L-1. PAHs were quantified by EPA Method 8270 for GCMS. All of the results for the chemical analysis were compared with the values for the CONAMA 420/2009 resolution. The results for benzene (27,639 μg.L-1) showed levels highly above the recommended by the CONAMA 420 resolution, wherein the maximum permissible for underground water is 5 μg.L-1. This is a worrying factor, since underground water makes up 70% of the city of Natal´s water supply
Resumo:
Due to the increasing activities and its disordered occupation, the catchment of the Pitimbu river is reason of concern for the population, since the river empties in the lagoon of the Jiqui where 30% of the water of this lagoon are caught for the supplying the city of Natal, playing an important fuction in the supply of water superficial for the capital of the Rio Grande do Norte. The superior stretch of the hydrography catchment of the Pitimbu river - Macaíba/RN, object of this study, is denoted by the eminently agricultural occupation with the use of the irrigated agriculture in the many properties that compose this stretch. Because of this becomes necessary to analyze the availability of the water resources in the catchment of the Pitimbu river, in the superior stretch, collating with the use and occupation of the existing terrain. The stretch in study was divided in eight points which had been performed tests throughout the water and analyzed the parameters physicist-chemistries and heavy metals that are praised by resolution CONAMA nº 357 e, visits in field with photographic survey for characterization of this verifying the situation where if it finds the river. The stretch presented some divergence in the parameters of pH and iron, however the results denote a characteristic of the region. The great amount of slide barrages throughout the river and the wet street was observed, had also verified near the edges the launching of garbage and, the great amount of aquatic vegetation. With this it is concluded that the water of the river can be used for human supplying, therefore inside presents a quality of drinking waters of the standards demanded for resolution CONAMA nº 357, in this way, the stretch in study could be adopted as an Envoiremental Area Protection (APA), to preserve and to guarantee, at least in this stretch, that its condition remains unchanged and continues to supply of permanent form a water of excellent quality
Resumo:
The accelerated growth of urban regions have produced relevant effects on water resources. Urban regions need an adequate institutional structure that can be able to face environmental demands and the adverse effects of land use on water resources. This study aims at analysing land use effects on heavy metals concentration in sediments and water, as well as making a comparative analysis involving water physical-chemical parameters. Applied methodology included both in loco water parameters measurement and water and bed sediment sampling at 8 sections along the fluvial system. Sample analysis was performed in laboratory in order to measure heavy metal concentrations. It was measured metal concentrations of Al, Cu, Pb, Cd, Fe, Ni and Zn. Once the samples were subjected to acid digestion (method 3050B), concentration values were measured by using atomic absorption spectrometry by flame (ICP-FLAA). The analysis results were compared with normative reference, these standards is intended to assess the risks of toxic substances in sediment and water management programs. The normative reference used in this work were: a) Ontario Ministry of the Environment and Energy (OMEE, 1993) b) Normative Netherlands (VROM, 2000); c) Normative Canadian (CCME, 1999); d) United States Environmental Protection Agency (USEPA, 1977), e) CONAMA Resolution No. 344/2004; f) CONAMA Resolution No. 357/2005. The high concentrations of iron (38,750 mg.g-1), Lead (1100 mg.g-1), Nickel (100 μg.g-1) and zinc (180 μg.g-1) detected sediments confirm the state of degradation of the aquatic system. Iron concentrations (1.08 mg.L-1), Aluminum (0.6 mg.L-1) and phosphorus (0.05 mg.L-1) present in the water are outside the established standards for human consumption
Resumo:
The building of water reservoirs has become a solution for water scarcity of the semiarid regions, however, the land use and occupation near the margins of the reservoirs have been causing serious damage to water quality, harming their use. This paper aims to analyze the land use and occupation in the margins of the Northeast reservoir and evaluate their influence on the water quality, to identify the areas and activities that represent an higher risk of contamination to the reservoir. The study was conducted at the reservoir Dourado, located in the city of Currais Novos - RN, during the period from August 2012 to February 2013. Were defined six areas regarding the land use and occupation, then, Water samples were collected from the margins in these areas for the characterization of water quality. The results showed that almost all Permanent Preservation Areas (PPA) from the reservoir is degraded, increasing the susceptibility of large input of nutrients and contaminants loads. The water reservoir showed low quality, being with strong evidence of eutrophication due to the nutrient accumulation arising from the activities surrounding the reservoir, mainly from agriculture and Livestock. The Areas 1 and 2 are the areas that present a greater risk of reservoir degradation, because are the possible major sources of nutrients (phosphorus total, orthophosphate and nitrate), however, due to the small size of the reservoir, any compound that reaches its margins ultimately affects the water quality of the same
Resumo:
In the semiarid region of northeastern of Brazil, the reservoirs are vulnerable to water level seasonal fluctuations, they re related to the hydrological cycle. The rain periods are irregular and there are long periods of drought that increases eutrophication process. That happens because of the water level s reduction and nutrient concentration. The Boqueirao, located in northeastern Brazil , is a mesotrophic reservoir. The reservoir is naturally susceptible to deterioration of water quality. This happens because of the potential diffuse sources arising from the use and occupation of the basin, associated with shallow soil caatinga biome and highly vulnerable to erosion. This study aimed to analyze the influence of the use and occupation of the area around and the water quality of the watershed. A study of the area around the Boqueirão was performed, taking the potentially polluting activities. Limnological variables were monitored monthly in 3 points of the reservoir to assess the water quality. Was evidenced an event of prolonged drought, with rainfall below the historical average for the year of study. By the index of water quality, the watershed was classified as " good " during the whole year of 2012. According to the trophic index adopted the reservoir is characterized as mesotrophic. The main anthropogenic impacts identified in the soil were arboreal selective logging, mining, diffuse contribution of residues from agricultural and livestock activities. The lack of precipitation and the degradation of the surrounding area, affect negatively the water quality, requiring immediate control to prevent degradation of the watershed . Although there wasn t a majority polluting activity in the region. The total of several impacting activities, the high susceptibility of the soil and the selective clearing of caatinga vegetation can accelerate the natural process of eutrophication in the water body
Resumo:
Reservoirs are artificial ecosystems intermediate between rivers and lakes widely used in the Brazilian semiarid region as a way to provide water supply due to the said region’s water scarcity. The use of water from these supply sources for multiple uses, along with occupation and utilization of its riparian zone without proper management, directly influences the increased nutrient flow into aquatic environments, there with contributing to the acceleration of eutrophication. The semi-arid region is characterized by peculiar weather conditions, such as severe evaporation, high temperatures with little variation throughout the year and long water residence time, making it susceptible to prolonged drought occurrence, which tends to concentrate the nutrients in reservoirs, which favors the development of eutrophic conditions. Moreover, it is common soil use and occupation by carrying out activities with potential environmental impact on natural resources such as agriculture, livestock farming and lack of sanitation. The aim of this study is both to evaluate the water quality of the Cruzeta Reservoir, located in the semiarid region of Rio Grande do Norte, during a prolonged drought period, and assess the quality of its riparian zone soil under different uses, by monitoring physical-chemical variables. Along the prolonged drought, high levels of turbidity, suspended solids, nutrients and chlorophyll a were verified as present, therefore featuring low water quality. In the riparian zone of Cruzeta Reservoir, the areas under use of agriculture and livestock farming appeared as one of the main diffuse sources of nutrients to the said reservoir, featuring the highest levels of phosphorus and nitrogen in the soil, originated from decomposition of animal excreta and from the use of fertilizers, creating a tendency to increased eutrophication of such water supply source. The indicators of water and soil quality are useful for monitoring and evaluating the conservation status of natural resources, allowing the control and mitigation of the reservoir eutrophication process. This study confirmed the hypothesis that the reduction of water level, resulting from prolonged drought event, aggravates the symptoms of eutrophication; and also that using the soil under severalways modifies the physic chemical properties of the soil, having livestock farming and agriculture as the usages with greatest potential towards yielding P and N to the aquatic environment.
Resumo:
Human activities alter soil features, causing the deterioration of its quality. Land use and occupation in drainage basins of water supply reservoirs can change the environmental soil quality and, thus, lead to the expansion of the soil potential of being a diffuse pollution source. In the Brazilian semiarid region, the soils are generally shallow with high susceptibility to erosion, favoring the sediment and nutrients input into the superficial waterbodies, contributing to the eutrophication process. Moreover, this region has high temperatures and high evapotranspiration rates, that are generally higher than the precipitation rates, causing a negative hydric balance and big volume losses by evaporation. The water volume reduction increases the nutrients’ concentration and, therefore, exacerbates the eutrophication process, deteriorating the water quality. Thereby, we hypothesized that the eutrophication process of semiarid reservoirs is intensified both by the extreme climatic events of prolonged drought, and by the diffuse pollution due to the basin land use and occupation. The study aimed to test whether the land use and occupation activities of the basin and the severe drought events intensify the eutrophication process of a semiarid tropical reservoir. To verify the influence of human activities carried out in the water supply of drainage basin on the soil quality and the eutrophication process, we conducted the mapping of the kind of use and occupation, as well the calculation of erosion for each activity and the soil quality evaluation of the riparian zone and water quality of the water supply. For the water analyses, the samplings were carried out monthly in the deeper point, near dam. For the soil, deformed composite samples were taken for the physical and chemical attributes analysis, according to the identified land use and occupation classes. The results showed that extreme droughts drastically reduces the water volume and elevates the nutrients concentration, contributing, thus, to a bigger degradation of water quality. Furthermore, we verified that human activities in the drainage basin promote the diffuse pollution, by increasing the soil susceptibility to erosion and nutrients contents. Summarizing, our results support the investigated hypothesis that activities of land use and occupation and extreme drought generate a combined effect that provide the intensification of eutrophication process of semiarid reservoirs.