36 resultados para compostos de enxofre

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the area of advanced materials has been considerably, especially when it comes to materials for industrial use, such as is the case with structured porosity of catalysts suitable for catalytic processes. The use of catalysts combined with the fast pyrolysis process is an alternative to the oxygenate production of high added value, because, in addition to increasing the yield and quality of products, allows you to manipulate the selectivity to a product of interest, and therefore allows greater control over the characteristics of the final product. Based on these arguments, in this work were prepared titanium catalysts supported on MCM-41 for use in catalytic pyrolysis of biomass, called elephant grass. The reactions of pyrolysis of biomass were performed in a micro pyrolyzer, Py-5200, coupled to GC / MS, the company CDS Corporation, headquartered in the United States. The catalysts Ti-MCM-41 in different molar ratios were characterized by XRD, TG / DTG, FT-IR, SEM, XRF, UV-visible adsorption of nitrogen and the distribution of particle diameter and specific surface area measurement by the BET method. From the catalytic tests it was observed that the catalysts synthesized showed good results for the pyrolysis reaction.The main products were obtained a higher yield of aldehydes, ketones and furan. It was observed that the best reactivity is a direct function of the ratio Si/Ti, nature and concentration of the active species on mesoporous supports. Among the catalysts Ti-MCM-41 (molar ratio Si / Ti = 25 and 50), the ratio Si / Ti = 25 (400 ° C and 600 ° C) favored the cracking of oxygenates such as acids , aldehydes, ketones, furans and esters. Already the sample ratio Si / Ti = 50 had the highest yield of aromatic oxygenates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil and petrochemical industry is responsable to generate a large amount of waste and wastewater. Among some efluents, is possible find the benzene, toluene, ethilbenze and isomers of xilenes compounds, known as BTEX. These compounds are very volatily, toxic for environment and potencially cancerigenous in man. Oxidative advanced processes, OAP, are unconventional waste treatment, wich may be apply on treatment and remotion this compounds. Fenton is a type of OAPs, wich uses the Fenton s reactant, hydrogen peroxide and ferrous salt, to promove the organic degradation. While the Photo-Fenton type uses the Fenton s reactant plus UV radiation (ultraviolet). These two types of OAP, according to literature, may be apply on BTEX complex system. This project consists on the consideration of the utilization of technologies Fenton and Photo-Fenton in aqueous solution in concentration of 100 ppm of BTEX, each, on simulation of condition near of petrochemical effluents. Different reactors were used for each type of OAP. For the analyticals results of amount of remotion were used the SPME technique (solid phase microextraction) for extraction in gaseous phase of these analytes and the gas chromatography/mass espectrometry The arrangement mechanical of Photo-Fenton system has been shown big loss by volatilization of these compounds. The Fenton system has been shown capable of degradate benzene and toluene compounds, with massic percentage of remotion near the 99%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this work our concern was to investigate the thermal effects in organic crystals using the theory of the polarons. To analyse such effect, we used the Fröhlich s Hamiltonian, that describes the dynamics of the polarons, using a treatment based on the quantum mechanics, to elucidate the electron-phonon interaction. Many are the forms to analyzing the polaronic phenomenon. However, the measure of the dielectric function can supply important information about the small polarons hopping process. Besides, the dielectric function measures the answer to an applied external electric field, and it is an important tool for the understanding of the many-body effects in the normal state of a polaronic system. We calculate the dielectric function and its dependence on temperature using the Hartree-Fock decoupling method. The dieletric function s dependence on the temperature is depicted by through a 3D graph. We also analyzed the so called Arrhenius resistivity, as a functionof the temperature, which is an important tool to characterize the conductivity of an organic molecule. In the second part we analyzed two perovskita type crystalline oxides, namely the cadmium silicate triclinic (CdSiO3) and the calcium plumbate orthorhombic (CaPbO3), respectively. These materials are normally denominated ABO3 and they have been especially investigated for displaying ferroelectric, piezoelectric, dielectrics, semiconductors and superconductors properties. We found our results through ab initio method within the functional density theory (DFT) in the GGA-PBE and LDA-CAPZ approximations. After the geometry optimization for the two structure using the in two approximations, we found the structure parameters and compared them with the experimental data. We still determined further the angles of connection for the two analyzed cases. Soon after the convergence of the energy, we determined their band structures, fundamental information to characterize the nature of the material, as well as their dielectrics functions, optical absorption, partial density of states and effective masses of electrons and holes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem como objetivo estudar a influência da adição de diversos aditivos tais como óxido de silício (SiO2), óxido de bismuto (BiO2), óxido de cério (CeO2) e óxido de lantânio (La2O3) nas propriedades elétricas e dielétricas do titanato de bário (BaTiO3) policristalino. As amostras de titanato de bário foram compactadas e sinterizadas no Laboratório de Tecnologia dos Pós, do Departamento de Física da Universidade Federal do Rio Grande do Norte. Foram realizadas medidas de resistividade elétrica e constante dielétrica em função da temperatura, bem como ensaios de difração de raios-X e análise microestrutural através da microscopia eletrônica de varredura. A análise dos resultados permitiu avaliar a influência dos aditivos nas propriedades elétricas e dielétricas, e propor a utilização de cerâmicas eletrônicas a base de titanato de bário com propriedades superiores as do material existente atualmente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work were synthesized and studied the spectroscopic and electrochemical characteristics of the coordination compounds trans-[Co (cyclam)Cl2]Cl, trans- Na[Co(cyclam)(tios)2], trans-[Co(en)2Cl2]Cl and trans-Na[Co(en)2(tios)2], where tios = thiosulfate and en = ethylenediamine. The compounds were characterized by: Elemental Analysis (CHN), Absorption Spectroscopy in the Infrared (IR), Uv-Visible Absorption Spectroscopy, Luminescence Spectroscopy and Electrochemistry (cyclic voltammetry). Elemental Analysis (CHN) suggests the following structures for the complex: trans- [Co(cyclam)Cl2]Cl.6H2O and trans-Na[Co(cyclam)(tios)2].7H2O. The electrochemical analysis, when compared the cathodic potential (Ec) processes of the complexes trans- [Co(cyclam)Cl2]Cl and trans-[Co(en)2Cl2]Cl, indicated a more negative value (-655 mV) for the second complex, suggesting a greater electron donation to the metal center in this complex which can be attributed to a greater proximity of the nitrogen atoms of ethylenediamine in relation to metal-nitrogen cyclam. Due to the effect of setting macrocyclic ring to the metal center, the metal-nitrogen bound in the cyclam are not as close as the ethylenediamine, this fact became these two ligands different. Similar behavior is also observed for complexes in which the chlorides are replaced by thiosulfate ligand, trans-Na[Co(en)2(tios)2] (-640 mV) and trans-Na[Co(cyclam)(tios)2] (-376 mV). In absorption spectroscopy in the UV-visible, there is the band of charge transfer LMCT (ligand p d* the metal) in the trans-Na[Co(cyclam)(tios)2] (350 nm, p tios  d* Co3+) and in the trans-Na[Co(en)2(tios)2] (333 nm, p tios d* Co3+), that present higher wavelength compared to complex precursor trans- [Co(cyclam)Cl2]Cl (318 nm, pCl  d* Co3+), indicating a facility of electron density transfer for the metal in the complex with the thiosulfate ligand. The infrared analysis showed the coordination of the thiosulfate ligand to the metal by bands in the region (620-635 cm-1), features that prove the monodentate coordination via the sulfur atom. The νN-H bands of the complexes with ethylenediamine are (3283 and 3267 cm-1) and the complex with cyclam bands are (3213 and 3133 cm-1). The luminescence spectrum of the trans-Na[Co(cyclam)(tios)2] present charge transfer band at 397 nm and bands dd at 438, 450, 467, 481 and 492 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative desulfurization process (ODS) of a commercial diesel fuel was performed under mild conditions in the presence of catalysts based on vanadium or manganese, supported on alumina, clays (commercial, natural and pillared) and zeolites (NaX, NaY, beta, mordenite and ZSM-5). The catalysts were synthesized by wet impregnation and characterized by X-ray diffraction, textural analysis by N2 adsorption and scanning electron microscopy. The dibenzothiophene (DBT) was used as sulfur compound in catalytic evaluation. The reactions were performed using acetonitrile as solvent and the hydrogen peroxide as oxidant at 55°C. The reaction products were analized by gas chromatography (GC-FID). In the studied conditions, the process was efficient due to the DBT was converted to its corresponding sulfone. Both DBT and corresponding sulfone were extracted by the solvent. Removals and oxidations up to 100% of sulfur compound were achieved. The catalysts supported on ZSM-5 zeolite showed are more effective for oxidation reaction of sulfur compound, presenting the best results. It was observed for oxidation reaction, that vanadium catalysts were more effective and manganese catalysts showed best results for removal of sulfur compounds