4 resultados para complexação Al-ligantes orgânicos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Metal Organic Frameworks (MOFs) are supramolecular structures consisted of ions or metal clusters coordinated to organic ligands which are repeated in two or three dimensions. These structures have atracted much attention due to their properties such as low density, high specific surface area and large volume of pores. In this work, MOFs consisted of zinc clusters connected by ditopic ligands, terephthalic acid (1,4- H2BDC) or isophthalic acid (1,3-H2BDC) were synthesized. To obtain the proposed materials, different routes and synthetic parameters were tested, such as the molar ratio of the precursors, the addition of template molecules, the type of solvente, the addition of organic base or the type of a counter-ion of Zn salt. It was found that the variation of these parameters led to the formation of different metalorganic structures. The solids obtained were characterized by XRD, SEM and IR. For the samples identified as MOF- 5, it was verified that the structure was composed of both interpenetrated and non interpenetrated structures. These samples showed a low stability, becoming totally transformed into another structure within less than 72 hours. The addition of the nickel and/or cobalt was found to be a promissing method for increasing the stability of MOF- 5, which in this case, still remained unconverted to another structure even after 15 days of exposure to air. The samples prepared from 1,3-H2BDC were probably new, still unknown Metal Organic Frameworks
Resumo:
Metal Organic Frameworks (MOFs) are hybrids materials, often crystalline, consisting of metal or metal clusters, connected by polytopic organic ligands repetitively, leading to structures, usually porous. In this work, MOFs based on lanthanide ions (La3+ and Gd3+) and dicarboxylate type of ligands (isophthalic and terephthalic acids), were synthesized by hydrothermal, solvothermal and hydro(solvo)thermal methods. The effects of the synthetic route as well as the type of heating, conventional or by microwave, on the structure and properties of MOFs were studied. The powder samples obtained were characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. The results suggest that the addition of an organic or inorganic base is needed to promote the deprotonation of the ligand, since in the samples prepared by the hydrothermal method, without the use of a base, no formation of the metalorganic framework was observed. On the other hand, the presence of DMF as solvent or cosolvent, afforded the deprotonation of the ligand with the consequent formation of MOFs. At least two different crystalline structures were identified for the samples prepared with terephthalic acid. These samples are isostructural with those reported for phases Eu(1,3-BDC)DMF, Eu2(1,4-BDC)3 (DMF)2 and Tb(1,4-BDC)H2O. The presence of water in the reaction medium in the hydro(solvo)thermal method, provoked the growth of the structure different from that observed in the absence of water. This can be explained by the difference in the coordination mode of water and DMF to lanthanide ions. Although not identified by XRD, the samples prepared with isophthalic acid, also present metalorganic structures, which was confirmed by the presence of the characteristic displacement of the carbonyl group band in their infrared spectra, compared to the spectrum of the pure ligand. This shift was also observed in the samples prepared with terephthalic acid. Thermal analisys shows that the metal organic frameworks do not collapse occurs at a temperature below 430°C.The analysis of scanning electron microscopy suggests that the morphology of powders is highly dependent on the type of heating used, conventional or by microwave.
Resumo:
This work describes the synthesis and aplication of homogeneous and heterogenized iron catalysts in the alkylation reaction of toluene with propene, empolying experimental design. The homogenous complex was obtained trough the synthesis of the organic ligand folowed by the complexation of the iron(II) chloride. As to the heterogenized complexes, first were synthetized the inorganic supports (SBA-15, MCM-41 and Al-MCM-41). Then, it was synthetized the ligand again, that through funcionalization with chloropropyltrimethoxysilane (CPTMS), was anchored on the support previously calcinated. To these anchored ligands, was complexed the iron(II) chloride, previously solubilizated in tetrahydrofuran (THF). The organic ligand characterization was accomplished trough nuclear magnetic resonance (NMR) and Infrared spectroscopy (IV). The supports were characterized with x-ray diffraction (DRX), texture analysis with nitrogen adsorption/desorption (before and after the anchoring), termogravimetric analysis (TG) and infrared (IV). The metalic content was quantified trough the atomic absorption spectrophotometry (AAS). The complexes were tested in catalytic reactions emolying ethylaluminium sesquichloride (EASC) as co-catalyst in steel reactor, under mecanic stirring. The reaction conditions ranged from 4 to 36 ◦C, with many aluminum/iron ratios. The catalysts were actives in homogeneous and heterogenized ways. The homogenous catalytic complex showed a maximum turnover frequency (TOF) of 8.63 ×103 · h −1 , while, in some conditions, the anchored complexes showed better results, with TOF of until 8.08 ×103 · h −1 . Aditionally, it was possible to determine an equation, to the homogenous catalyst, that describes the product quantity in function of reacional temperature and aluminum/iron ratio.
Resumo:
In this study, binary perovskite (BaCexO3) were doped with praseodymium (Pr) to obtainment of the ternary material BaCexPr1-xO3. This material was synthesized by the complexation method combining EDTA/Citrate with the stoichiometric ratio of the element Praseodymium ranging from x = 0.1 to x = 0.9 in order to determine the influence of this rare earth element on the morphology and microstructure of the final powder. At first the material was synthesized based on the route proposed by literature (Santos, 2010), and then characterized by SEM and XRD, besides being refined by the Rietveld method. In the material that had lowest residual parameter, S, and lowest average size of crystal, pH variation of synthesis solution was made in order to identify the influence of this parameter on the morphology and microscopy of the final powder. The results show that addition of praseodymium did not directly influence the crystallographic and lattice parameters, keeping even the same orthorhombic structure of the binary material BaCexO3, according to Yamanaka et al (2003). Material type BaCe0,2Pr0,8O3 had lowest residual parameter (S=1.4) and lowest average size of crystallite (26.4 nm), being used as reference in the pH variation of synthesis solution for 9, 7, 5 and 3, respectively. Variation of this parameter showed that when the synthesis solution pH was decreased to below 11, there was an increase in the average size of crystals, for pH 9, about 58.3%, for pH 7 (30.3 %), for pH 2 (2.3%) and for pH 3 (42%), indicating that the value initially used and quoted by Santos (2010) was the most coherent