20 resultados para ativação artificial

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEDEIROS, Adelardo A. D. et al. SISAL - Um Sistema Supervisório para Elevação Artificial de Petróleo. In: Rio Oil and Gas Expo Conference, 2006, Rio de Janeiro, RJ. Anais... Rio de Janeiro, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major aim of this study was to test the hypothesis that the introduction of the Nile tilapia (Oreochromis niloticus) and the enrichment with nutrients (N and P) interact synergistically to change the structure of plankton communities, increase phytoplankton biomass and decrease water transparency of a semi-arid tropical reservoir. One field experiment was performed during five weeks in twenty enclosures (8m3) to where four treatments were randomly allocated: with tilapia addition (T), with nutrients addition (NP), with tilapia and nutrients addition (T+NP) and a control treatment with no tilapia or nutrients addition (C). A two-way repeated measures ANOVA was done to test for time (t), tilapia (T) and nutrient (NP) effects and their interaction on water transparency, total phosphorus, total nitrogen, phytoplankton and zooplankton. The results show that there was no effect of nutrient addition on these variables but significant fish effects on the biomass of total zooplankton, nauplii, rotifers, cladocerans and calanoid copepods, on the biovolume of Bacillariophyta, Zygnemaphyceae and large algae (GALD ≥ 50 μm) and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased the water transparency while nutrient enrichment increased the biomass of zooplankton (rotifers) but only in the absence of tilapia. In conclusion, the influence of fish on the reservoir plankton community and water transparency was greater than that of nutrient loading. This finding suggests that biomanipulation should be a greater priority in the restoration of eutrophic reservoirs in tropical semi-arid regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) in Brazil is a disease caused by Leishmania infantum chagasi (L.i.chagasi). The clinical evolution post-infection depends on the vertebrate host immune response, which is genetically mediated. This study aimed to evaluate the immune response of individuals living in endemic area for VL in the state of the Rio Grande do Norte, considering individuals with VL under treatment (n = 9), recovered VL <1 year post treatment (n = 10), > 10 years posttreatment (n = 9), uninfected individuals living in endemic areas (n = 7), individuals that lost DTH response (n=6) and asymptomatic individuals for VL (n=9). Peripheral blood cells were evaluated in the presence and absence of soluble Leishmania antigens (SLA) and ex vivo, to determine activation, presence of regulatory cells and memory cells. The Leishmania parasitemia and anti-Leishmania antibodies were determined respectively by qPCR and ELISA. Cells from individuals with VL under treatment showed less cell activation after stimulation with SLA for the markers CD4/CD69, CD8/CD69 and CD8/CD25 compared with VL post treatment treatment (p <0.001). Apparently uninfected individuals have a higher cell activation than symptomatic VL (p <0.001), with the exception of CD8/CD25 marker (p = 0.6662). On the other hand, in the ex-vivo group, significant differences were observed for CD4/CD69, CD8/CD69 and CD8/CD25 between the 4 groups due to increased cell activation present in cells of individuals symptomatic LV (p <0.001). VL cells under treatment, ex vivo, have a lower percentage of memory cells (CD4/CD45RO and CD8/CD45RO) than individuals VL post-treatment or control group (p = <0.01). Likewise, individuals with symptomatic VL have fewer regulatory cells when stimulated by SLA [CD4/CD25 (p = 0.0022) and CD4/FOXP3 (p = 0.0016)] and in the ex-vivo group (p = 0.0017). Finally, DNA isolated from recovered VL contained Leishmania DNA, supporting the hypothesis of non-sterile clinical cure for Leishmania infection. Recovered VL, even 10 years after treatment have high levels of memory cells, which may be due to the presence of stimulation, either by reexposure to Leishmania or non-sterile cure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The several existing methods for oil artificial lifting and the variety of automation equipment for these methods many times lead the supervisory systems to be dedicated to a unique method and/or to a unique manufacturer. To avoid this problem, it has been developed the supervisory system named SISAL, conceived to supervise wells with different lifting methods and different automation equipments. The SISAL system is working in several Brazilian states but, nowadays, it is only supervising rod pump-based wells. The objective of this work is the development of a supervision module to the plunger lift artificial lift method. The module will have the same characteristics of working with automation hardware of many manufacturers. The module will be integrated to the SISAL system, incorporating the capacity to supervise the plunger lift artificial lift method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature