14 resultados para ZINC SUPEROXIDE-DISMUTASE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response
Resumo:
OBJECTIVE: The aim of this work was to analyse some oxidative stress parameters in patients of Systemic Lúpus Erythematosus. PATIENTS AND METHODS: Determinations of reduced glutathione content in whole blood were carried out. The activity of superoxide dismutase, gluthatione peroxidase and catalase in erythrocytes and the concentration of reactive substances of acid thiobarbituric in plasma of patients female (n =19) with SLE no activity of disease (Mex-SLEDAI < 2), with average ages of 32 ± 11 years, through the spectrophotometrical methods and from healthy individuals (n =30). Statistical data were analyzed by student t-test, p<0,05. RESULTS: Our data indicated a significant decrease on the activity of catalase and significant increase on the concentration of reactive substances of acid thiobarbituric in patients with SLE comparing with healthy individuals. There was no significant difference in other parameters. CONCLUSION: The results showed that oxidative stress has a role in the pathogenesis of the disease in SLE, even in patients without active disease.
Resumo:
Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers
Resumo:
Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise
Resumo:
Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications
Resumo:
The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.
Resumo:
The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response