2 resultados para Wireless instrumentation system
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Wireless sensor networks are reality nowadays. The growing necessity of connectivity between existing industrial plant equipments pushes the research and development of several technologies. The IEEE 802.15.4 LR-WPAN comes as a low-cost and powersaving viable solution, which are important concerns while making decisions on remote sensoring projects. This study intends to propose a wireless communication system which makes possible the monitoring of analogic and/or digital variables (i. e., the pressure studied) involved on the artificial methods for oil and gas lifting. The main issues are: To develop a software based on SMAC Standard in order to create a wireless network to monitoring analogic and/or digital variables; To evaluate the communication link based on the number of lost packets tested in different environments (indoor and outdoor) and To propose an instrumentation system consisting of wireless devices
Resumo:
Information extraction is a frequent and relevant problem in digital signal processing. In the past few years, different methods have been utilized for the parameterization of signals and the achievement of efficient descriptors. When the signals possess statistical cyclostationary properties, the Cyclic Autocorrelation Function (CAF) and the Spectral Cyclic Density (SCD) can be used to extract second-order cyclostationary information. However, second-order cyclostationary information is poor in nongaussian signals, as the cyclostationary analysis in this case should comprise higher-order statistical information. This paper proposes a new mathematical tool for the higher-order cyclostationary analysis based on the correntropy function. Specifically, the cyclostationary analysis is revisited focusing on the information theory, while the Cyclic Correntropy Function (CCF) and Cyclic Correntropy Spectral Density (CCSD) are also defined. Besides, it is analytically proven that the CCF contains information regarding second- and higher-order cyclostationary moments, being a generalization of the CAF. The performance of the aforementioned new functions in the extraction of higher-order cyclostationary characteristics is analyzed in a wireless communication system where nongaussian noise exists.