108 resultados para Variação de temperatura

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cotton is a hydrofilic textile fiber and, for this reason, it changes its properties according to the environment changes. Moisture and Temperature are the two most important factors that lead a cotton Spinning sector and influence its quality. Those two properties can change the entire Spinning process. Understanding this, moisture and temperature must be kept under control when used during the Spinning process, once the environment is hot and dry, the cotton yarns absorb moisture and lose the minimal consistency. According to this information, this paper was developed testing four types of cotton yarns, one kind of cotton from Brazil and the others from Egypt. The yarns were exposed to different temperatures and moisture in five different tests and in each test, six samples that were examined through physical and mechanical tests: resistance, strength, tenacity, yarn´s hairness, yarn´s evenness and yarn´s twisting. All the analysis were accomplished at Laboratório de Mecânica dos Fluídos and at COATS Corrente S.A., where, it was possible to use the equipments whose were fundamental to develop this paper, such as the STATIMAT ME that measures strength, tenacity, Zweigler G566, that measure hairiness in the yarn, a skein machine and a twisting machine. The analysis revealed alterations in the yarn´s characteristics in a direct way, for example, as moisture and temperature were increased, the yarn´s strength, tenacity and hairness were increased as well. Having the results of all analysis, it is possible to say that a relatively low temperature and a high humidity, cotton yarns have the best performance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The system built to characterize electrodes and, consequently, deposited fine films are constituted by a hollow cathode that works to discharges and low pressures (approximately 10-3 to 5 mbar), a source DC (0 to 1200 V), a cylindrical camera of closed borossilicato for flanges of stainless steel with an association of vacuum bombs mechanical and spread. In the upper flange it is connected the system of hollow cathode, which possesses an entrance of gas and two entrances for its refrigeration, the same is electrically isolated of the rest of the equipment and it is polarized negatively. In front of the system of hollow cathode there is a movable sample in stainless steel with possibility of moving in the horizontal and vertical. In the vertical, the sample can vary its distance between 0 and 70 mm and, in the horizontal, can leave completely from the front of the hollow cathode. The sample and also the cathode hollow are equipped with cromel-alumel termopares with simultaneous reading of the temperatures during the time of treatment. In this work copper electrodes, bronze, titanium, iron, stainless steel, powder of titanium, powder of titanium and silício, glass and ceramic were used. The electrodes were investigated relating their geometry change and behavior of the plasma of the cavity of hollow cathode and channel of the gas. As the cavity of hollow cathode, the analyzed aspects were the diameter and depth. With the channel of the gas, we verified the diameter. In the two situations, we investigated parameters as flow of the gas, pressure, current and applied tension in the electrode, temperature, loss of mass of the electrode with relationship at the time of use. The flow of gas investigated in the electrodes it was fastened in a work strip from 15 to 6 sccm, the constant pressure of work was among 2.7 to 8 x 10-2 mbar. The applied current was among a strip of work from 0,8 to 0,4 A, and their respective tensions were in a strip from 400 to 220 V. Fixing the value of the current, it was possible to lift the curve of the behavior of the tension with the time of use. That curves esteem in that time of use of the electrode to its efficiency is maximum. The temperatures of the electrodes were in the dependence of that curves showing a maximum temperature when the tension was maximum, yet the measured temperatures in the samples showed to be sensitive the variation of the temperature in the electrodes. An accompaniment of the loss of mass of the electrode relating to its time of use showed that the electrodes that appeared the spherical cavities lost more mass in comparison with the electrodes in that didn't appear. That phenomenon is only seen for pressures of 10-2 mbar, in these conditions a plasma column is formed inside of the channel of the gas and in certain points it is concentrated in form of spheres. Those spherical cavities develop inside of the channel of the gas spreading during the whole extension of the channel of the gas. The used electrodes were cut after they could not be more used, however among those electrodes, films that were deposited in alternate times and the electrodes that were used to deposit films in same times, those films were deposited in the glass substrata, alumina, stainless steel 420, stainless steel 316, silício and steel M2. As the eletros used to deposit films in alternate time as the ones that they were used to deposit in same times, the behavior of the thickness of the film obeyed the curve of the tension with relationship the time of use of the electrode, that is, when the tension was maximum, the thickness of the film was also maximum and when the tension was minimum, the thickness was minimum and in the case where the value of the tension was constant, the thickness of the film tends to be constant. The fine films that were produced they had applications with nano stick, bio-compatibility, cellular growth, inhibition of bacterias, cut tool, metallic leagues, brasagem, pineapple fiber and ornamental. In those films it was investigated the thickness, the adherence and the uniformity characterized by sweeping electronic microscopy. Another technique developed to assist the production and characterization of the films produced in that work was the caloteste. It uses a sphere and abrasive to mark the sample with a cap impression, with that cap form it is possible to calculate the thickness of the film. Through the time of life of the cathode, it was possible to evaluate the rate of waste of its material for the different work conditions. Values of waste rate up to 3,2 x 10-6 g/s were verified. For a distance of the substratum of 11 mm, the deposited film was limited to a circular area of 22 mm diameter mm for high pressures and a circular area of 75 mm for pressure strip. The obtained films presented thickness around 2,1 µm, showing that the discharge of arch of hollow cathode in argon obeys a curve characteristic of the tension with the time of life of the eletrodo. The deposition rate obtained in this system it is of approximately 0,18 µm/min

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed an assay methodology that considered the temperature variation and the scanning electron microscopy as a method to quantify and characterize respectively the consumption evolution in three 46 LA machines, with internal combustion and two-stroke engines, 7.64 cm3 cylinder capacity, 23.0 millimeters diameter and 18.4 millimeters course, RPM service from 2.000 to 16.000 rpm, 1.2 HP power, and 272 grams weight. The investigated engines components were: (1) head of the engine (Al-Si alloy), (2) piston (Al-Si alloy) and (3) piston pin (AISI 52100 steel). The assays were carried out on a desktop; engines 1 and 2 were assayed with no load, whereas in two assays of engine 3 we added a fan with wind speed that varied from 8.10 m/s to 11.92 m/s, in order to identify and compare the engine dynamic behavior as related to the engines assayed with no load. The temperatures of the engine s surface and surroundings were measured by two type K thermopairs connected to the assay device and registered in a microcomputer with data recording and parameters control and monitoring software, throughout the assays. The consumed surface of the components was analyzed by scanning electron microscopy (SEM) and microanalysis-EDS. The study was complemented with shape deformation and mass measurement assays. The temperature variation was associated with the oxides morphology and the consumption mechanisms were discussed based on the relation between the thermal mechanical effects and the responses of the materials characterization

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of a broader project, Diversity and Distribution Patterns of Floristic and Faunistic composition of remnants of Potiguar s Atlantic Forest, as subsidies to conservation , that subsidizes a group of institutional research, This study aimed to evaluate the structure of the assemblage of lizards a remnant of the of the northern Atlantic Forest, identifying ecological factor (s) that contribute to the coexistence of sympatric species. Additionally, we studied the thermal ecology and thermoregulatory behavior of umbrophily and heliophily species live the Parque Estadual Mata da Pipa (PEMP), a remnant of Atlantic forest located in the Tibau do Sul municipality of, Rio Grande do Norte State, Brazil. It is one of the largest remnants of the Atlantic Forest and has an area of approximately 290 ha. The study was performed by four excursions to the field for 20 days each, when active search and pitfalls traps were used to record and colleted specimens in different habitats of the area. We recorded the presence of 19 species of lizards, of which seven are typical of forest areas, three are endemic Atlantic Forest, these two northern and one are new record for the Rio Grande do Norte. The use of resources, the results showed that phylogenetically related species do not always use a similar way the resources available; the feeding niche was the segregated component of the species that overlapped extensively in the use of space and vice versa. To examine the thermal ecology and thermoregulatory behavior of Kentropyx calcarata and Coleodactylus natalensis, we recorded the clocal temperature (Tc), oh the substrate (Ts) and of the air (Ta) to investigate what of these are the source of heat more important to the temperature s body of these lizards. Behavioral observations were conducted to analyze strategies to optimize the acquisition of heat. The air temperature explained most strongly to variation in body temperature of K. calcarata, while the temperature of the substrate to C. natalensis. As for the behavioral observations, they confirmed that K. calcarata is an active thermoregulatory; C. natalensis is a passive thermoregulatory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyester fibers are the most used fibers in the world and disperse dyes are used for dyeing these fibers. After dyeing, the colorful dyebath is discharged into effluent streams, which needs a special treatment for color removal. Surfactants interaction with dyes has been evaluated in several studies, including the textile area, specifically in the separation of dyes from textile wastewater. In this work a cationic surfactant was used in a microemulsion system for the extraction of anionic dyes (disperses dyes) from textile wastewater. These microemulsion system was composed by dodecylamonium chloride (surfactant), kerosene oil (organic phase), isoamyl alcohol (cosurfactant) and the wastewater (aqueous phase). The wastewater that results after the dyeing process is acid (pH 5). It was observed that changing the pH value to above 12.8 the extraction could be made, resulting in an aqueous phase with low color level. The Scheffé net experimental design was used for the extraction process optimization, and the obtained results were evaluated using the program "Statistica 7.0". The optimal microemulsion system was composed by 59.8wt.% of wastewater, 30.1wt.% of kerosene, 3.37wt.% of surfactant and 6.73wt.% of cosurfactant, providing extraction upper than 96%. A mix of reactive dyebath (50%) and disperse dyebath (50%) was used as aqueous phase and it presented extraction upper than 98%. The water phase after extraction process can be reused in a new dyeing, being obtained satisfactory results, according to the limits established by textile industry for a good dyeing. Tests were accomplished seeking to study the influence of salt addition and temperature. An experimental design was used for this purpose, which showed that the extraction doesn't depend on those factors. In this way, the removal of color from textile wastewater by microemulsion is a viable technique (that does not depend of external factors such as salinity and temperature), being obtained good extraction results even with in wastewater mixtures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The knowledge of the rheological behavior of microemulsionated systems (SME) is of fundamental importance due to the diversity of industrial applications of these systems. This dissertation presents the rheological behavior of the microemulsionated system formed by RNX 95/alcohol isopropyl/p-toulen sodium sulfonate/kerosene/distilled water with the addition of polyacrylamide polymer. It was chosen three polymers of the polyacrylamide type, which differ in molar weight and charge density. It was studied the addition of these polymers in relatively small concentration 0,1% in mass and maximum concentration of 2,0%. It was made analysis of flow to determine the appearing viscosities of the SME and rheological parameters applying Bingham, Ostwald de Waale and Herschell-Buckley models. The behavior into saline environment of this system was studied for a solution of KCl 2,0%, replacing the distilled water. It was determined the behavior of microemulsions in relation with the temperature through curves of flow in temperatures of 25 to 60ºC in variations of 5ºC. After the analysis of the results the microemulsion without the addition of polymer presented a slight increase in its viscosity, but it does not mischaracterize it as a Newtonian fluid. However the additive systems when analyzed with low concentration of polymer adjusted well to the applied models, with a very close behavior of microemulsion. The higher concentration of the polymer gave the systems a behavior of plastic fluid. The results of the temperature variation point to an increase of viscosity in the systems that can be related to structural changes in the micelles formed in the own microemulsion without the addition of polymer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the structures of LaCoO3, La0,8Ba0,2CoO3 and La0,8Ca0,2CoO3 perovskites were characterized as a function of temperature (LaCoO3 structure being analyzed only at room temperature). The characterization of these materials were made by X-Ray Absorption Spectroscopy (XAS), in the cobalt K-edge, taking into account the correlated Einstein model X-ray absorption fine structure (EXAFS). The first part of the absorption spectrum corresponded the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These materials were prepared by the combustion method. The combustion products were calcinated at 900 0C, for 6 hours in air. Noted that the sample LaCoO3 at room temperature and samples doped with Calcium and Barium in the temperature range of 50 K to 298 K showed greater distortion to monoclinic symmetry with space group I2/a. However, the sample doped with barium at the temperatures 50 K, 220 K, and 260 K showed a slight distortion to rhombohedral symmetry with space group R-3c. The La0,8Ca0, 2CoO3 structure was few sensitive to temperature variation, showing a higher local distortion in the octahedron and a higher local thermal disorder. These interpretations were in agreement with the information electronic structural on the XANES region and geometric in the EXAFS region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, as well as in the past decades, the dumping of biodegradable organic waste in landfill is common practice in Brazil, as well as in most parts of the world. Nevertheless due to its rapid decomposition and release of odors, this practice hamper’s the operation and implementation of a recycling system. These facts encouraged our research to find an efficient system for the management of organic waste, not only for the use of official workers responsible for managing these wastes, but also for non-governmental institutions. The Recycling for Life Community Association – ACREVI (Associação Comunitária Reciclando para a Vida), together with the municipal authorities of Mossoró-RN, Brazil, have assumed the social role of collecting and recycling solid waste produced by most of the local population. However, it was observed that the organic waste it collected was not receiving any treatment. This present work aims to make compost with mixed waste (green waste and organic household), and then do chemical analysis of the material in view to use the waste as organic fertilizer. The objective being: to share the knowledge acquired by putting it into a very simple language accessible to people with little education. The experiment was conducted at ACREVI, Mossoró (RN), and the compost was obtained following the method "windrow", forming three cells (I, II, III) with conical shape, dimensions of 1.6 meters and 2.0 meters in diameter for cells I and II, and 1.0 meters high and 2.0 meters in diameter for cell III. The process was accompanied by analysis: CHN elemental, a variation of cell temperature, humidity, pH, TKN, bulk density, nutrients and heavy metals. Stabilized organic compounds reached the C/N ratio of 10.4/1 cell I and 10.4/1 in the cell II in the cell, showing how good soil conditions, with potential to improve the physical properties of any soil and pH acid soils, has presented the cell III at the end of the process the C/N 26/1, is a high ratio may be associated with the stack size III, thus changing the optimal conditions for the occurrence of the process. The levels of heavy metals in the analyzed compounds were lower than those established by the SDA normative instruction, Nº 27, of 5 June, 2006. The use of pruning trees and grass are used in small-scale composting, while generating a quality compost in the final process, it also created an important condition for a correct sizing of the composting piles. Under the studied conditions it is not advisable to use cells with a height of 1.00 m in height and 2.00 m in diameter, as these do not prevent the rapid dissipation of heat and thus can not be a good product at the end of composting. The composting process in the shed of the association and the preparation of the primer enabled the development of an alternative technology to generate income for members of ACREVI.