11 resultados para VEHÍCULOS DE MOTOR
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.
Resumo:
Contextualization: Several studies have examined the mobility of this group of children, however little is known about the impact of motor function in activities of daily living, considering the seriousness of their neuromotor damage. Objective: Identify the functional differences of children with Cerebral Palsy with different levels of motor dysfunction and correlate these differences with the areas of mobility, self-care and social function in functional ability and caregiver´s assistance of these children. Methods: An l analytical cross-section search was developed, which were part 70 children / families aged from 4 to 7.5 years, in the Rehabilitation Center for Children. As tools were used the Pediatric Evaluation Disability Inventory (PEDI) and the Gross Motor Function Classification System (GMFCS). Data analysis was performed by ANOVA and Pearson's correlation tests. Results: The results show the functional variability of children CP in different severity levels of motor disfunction This variation was observed in the areas of mobility, self-care and social function. The results also showed a strong correlation between the domains mobility and self-care, mobility and social function. Conclusions: The variability shown by the children with CP, suggests the use of PEDI and GMFCS as this association appears to increase the understanding of how the gross motor functions are related to activities of daily living, describing the best commitments and their degree of impact on functional activities. This correlation demonstrates how mobility is crucial to evaluate the performance and guide the therapeutic practice, to develop the children´s potencial, and guide the caregiver in stimulation
Resumo:
A fase da puberdade é o período em que ocorrem as maiores transformações características da adolescência. Por essa razão, este estudo objetivou identificar o estado nutricional, desempenho motor e marcadores dermatoglíficos em 2363 escolares púberes selecionados de forma estratificada, de ambos os sexos, com idades variando de 6 a 15 anos, matriculados no Ensino Fundamental (2ª a 9ª Séries) do ensino público no estado do Rio Grande do Norte. Foram avaliados o estado nutricional (Índice de Massa Corporal); as qualidades físicas básicas ( testes de coordenação, equilíbrio, agilidade, flexibilidade, força e velocidade); o potencial genético (método da dermatoglifia) e o estágio maturacional (auto avaliação de Tanner); Com relação ao estado nutricional observou-se que escolares acima do peso apresentam valores mais baixos em relação ao seu desempenho motor sendo esses valores, mais significativos nos meninos. No que se refere à maturação sexual, os resultados apontaram que os meninos atingem os estágios maturacionais primeiro que as meninas, não tendo encontrado correlação entre o potencial genético e os demais indicadores o que nos permite concluir que os escolares do estado do Rio Grande do Norte, principalmente os do sexo masculino sofrem influência significativa de seu estado nutricional e seu estágio maturacional no que diz respeito ao seu desempenho motor. Essa dissertação apresenta relação de interdisciplinaridade, tendo o seu conteúdo uma aplicação nos campos da Educação Física, Nutrição, Medicina e Enfermagem.
Resumo:
This work describes the study and the implementation of the speed control for a three-phase induction motor of 1,1 kW and 4 poles using the neural rotor flux estimation. The vector speed control operates together with the winding currents controller of the stator phasis. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed controls to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The main DSP recources used by the system are, respectively, the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
Relevant researches have been growing on electric machine without mancal or bearing and that is generally named bearingless motor or specifically, mancal motor. In this paper it is made an introductory presentation about bearingless motor and its peripherical devices with focus on the design and implementation of sensors and interfaces needed to control rotor radial positioning and rotation of the machine. The signals from the machine are conditioned in analogic inputs of DSP TMS320F2812 and used in the control program. This work has a purpose to elaborate and build a system with sensors and interfaces suitable to the input and output of DSP TMS320F2812 to control a mancal motor, bearing in mind the modularity, simplicity of circuits, low number of power used, good noise imunity and good response frequency over 10 kHz. The system is tested at a modified ordinary induction motor of 3,7 kVA to be used with a bearingless motor with divided coil
Resumo:
This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors
Resumo:
We developed an assay methodology that considered the temperature variation and the scanning electron microscopy as a method to quantify and characterize respectively the consumption evolution in three 46 LA machines, with internal combustion and two-stroke engines, 7.64 cm3 cylinder capacity, 23.0 millimeters diameter and 18.4 millimeters course, RPM service from 2.000 to 16.000 rpm, 1.2 HP power, and 272 grams weight. The investigated engines components were: (1) head of the engine (Al-Si alloy), (2) piston (Al-Si alloy) and (3) piston pin (AISI 52100 steel). The assays were carried out on a desktop; engines 1 and 2 were assayed with no load, whereas in two assays of engine 3 we added a fan with wind speed that varied from 8.10 m/s to 11.92 m/s, in order to identify and compare the engine dynamic behavior as related to the engines assayed with no load. The temperatures of the engine s surface and surroundings were measured by two type K thermopairs connected to the assay device and registered in a microcomputer with data recording and parameters control and monitoring software, throughout the assays. The consumed surface of the components was analyzed by scanning electron microscopy (SEM) and microanalysis-EDS. The study was complemented with shape deformation and mass measurement assays. The temperature variation was associated with the oxides morphology and the consumption mechanisms were discussed based on the relation between the thermal mechanical effects and the responses of the materials characterization
Desempenho motor de pacientes com acidente vascular cerebral em um jogo baseado em realidade virtual
Resumo:
The Cerebral Vascular Accident (CVA) is the leading cause of motor disability in adults and elderly and that is why it still needs effective interventions that contribute to motor recovery. Objective: This study was aimed to evaluate the performance of stroke patients in chronic stage using a virtual reality game. Method: 20 patients (10 with injury to the left and 10 to the right side), right-handed, average age 50.6 ± 9.2 years, and 20 healthy subjects with average age of 50.9 ± 8.8, also right-handed participated. The patients had a motor (Fugl-Meyer) and muscle tone assessment (Ashworth). All participants made a kinematic evaluation of the drinking water activity and then underwent training with the table tennis game on XBOX 360 Kinect®, 2 sets of 10 attempts for 45 seconds, 15 minutes rest between sets, giving a total of 30 minutes session. After training the subjects underwent another kinematic evaluation. The patients trained with the right and left hemiparect upper limb and the healthy ones with the right and left upper limb. Data were analyzed by ANOVA, t Student test and Pearson correlation. Results: There was significant difference in the number of hits between the patients and healthy groups, in which patients had a lower performance in all the attempts (p = 0.008), this performance was related to a higher level of spasticity (r = - 0.44, p = 0.04) and greater motor impairment (r = 0.59, p = 0.001). After training, patients with left hemiparesis had improved shoulder and elbow angles during the activity of drinking water, approaching the pattern of motion of the left arm of healthy subjects (p < 0.05), especially when returning the glass to the table, and patients with right hemiparesis did not obtain improved pattern of movement (p > 0.05). Conclusion: The stroke patients improved their performance over the game attempts, however, only patients with left hemiparesis were able to increase the angle of the shoulder and elbow during the functional activity execution, better responding to virtual reality game, which should be taken into consideration in motor rehabilitation