4 resultados para UNIFORM MAGNETIC-FIELD

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the present work is related to the dynamics of the steady state, incompressible, laminar flow with heat transfer, of an electrically conducting and Newtonian fluid inside a flat parallel-plate channel under the action of an external and uniform magnetic field. For solution of the governing equations, written in the parabolic boundary layer and stream-function formulation, it was employed the hybrid, numericalanalytical, approach known as Generalized Integral Transform Technique (GITT). The flow is sustained by a pressure gradient and the magnetic field is applied in the direction normal to the flow and is assumed that normal magnetic field is kept uniform, remaining larger than any other fields generated in other directions. In order to evaluate the influence of the applied magnetic field on both entrance regions, thermal and hydrodynamic, for this forced convection problem, as well as for validating purposes of the adopted solution methodology, two kinds of channel entry conditions for the velocity field were used: an uniform and an non-MHD parabolic profile. On the other hand, for the thermal problem only an uniform temperature profile at the channel inlet was employed as boundary condition. Along the channel wall, plates are maintained at constant temperature, either equal to or different from each other. Results for the velocity and temperature fields as well as for the main related potentials are produced and compared, for validation purposes, to results reported on literature as function of the main dimensionless governing parameters as Reynolds and Hartman numbers, for typical situations. Finally, in order to illustrate the consistency of the integral transform method, convergence analyses are also effectuated and presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study magnetic interface roughness in F/AF bilayers. Two kinds of roughness were considered. The first one consists of isolated defects that divide the substrate in two regions, each one with an AF sub-lattice. The interface exchange coupling is considered uniform and presents a sudden change in the defects line, favoring Neel wall nucleation. Our results show the interface field dependence of the threshold thickness for the reorientation of the magnetization in the ferromagnetic film. Angular profiles show the relaxation of the magnetization, from Neel wall, at the interface, to reoriented state, at the surface. External magnetic field, perpendicular to the easy axis of the substrate, favors the reoriented state. Depending, of the external magnetic field intensity, parallel to the easy axis of the AF, the magnetization profile at surface can be parallel or perpendicular to the field direction. The second one treats of distributed deffects, periodically. The shape hysteresis curves, exchange bias and coercivity were characterized by interface field intensity and roughness pattern. Our results show that dipolar effects decrease the exchange bias and coercivity