7 resultados para Turn Around Time
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment
Resumo:
This thesis describes the general behavior of the northern shore of the State of Rio Grande do Norte relating beach profile morphology with hydrodynamic and sedimentological parameters. The Macau and Serra Oil Field are inserted on this area and are under accelerated coastal erosion. At these oil fields are installed oil wells from PETROBRAS, nowadays located directly in the shoreline, under constant attacks of coastal processes (e.g. waves, tides and currents), which promote an intense morphodynamic variability of this sandy coast. The area was monitored for 24 months in three different stations (P01, P02 and P03). The methodology applied involved current techniques of beach profiles, hydrodynamical processes, remote sensing and geophysics. A synthesis of results obtained through the use of different time scales (monthly, lunar cycle, seasonal, annual) from a coastal dynamics study is presented. The average wind direction corresponded to 77ºAz (NE). The steepness of the berm and of the shoreface, as well as coastal current direction, do not present major changes, with an average of 36º for the steepness of the berm, 15º for the shoreface and 15º for the coastal current direction. This data set allows us to infer that the months of larger coastal erosion were November/2000 and April/2001, because of the largest wave parameter during this time. The months of worse coastal erosion in this area are related with the increasing wavy energy. This in turn, seems to be related to seasonal climatic variations, with the wave energy and tide currents speed increasing during months of minor precipitations (June to January). The months of worse coastal erosion were September and November, when the largest wave parameters and speed currents are measured in the area. Since these months are included on the period of minor precipitations, we related the coastal erosion to seasonal climatic variations. The results obtained during these 24 months of monitoring confirms a situation of accentuated erosion, mainly in Profile 03 (Barra do Corta-Cachorro), where the wave height, period, and coastal current speed are always larger than the values found in Profile 02 (Macau5). Probably these values are more expressive in Profile 03, because it does not present any natural structure of protection against the wave impacts, as the barrier island located at Ponta do Tubarão, or the sand banks in front of Macau5. The transport of the sediments occurs from East to West, and the sand accumulation is more pronounced on Profile 03 intertidal zone, where there are embrionary dunes in dryer months. The tidal currents speed, on the other hand, is more accentuated in the Macau5 area (Profile 02). At Ponta do Tubarão, the tidal currents presented a preferential direction for NE, at times of flood, currents and for NW, at times of ebb current; at Barra do Corta-Cachorro the direction of the currents were predominantly for NW, independent of the tide phase, coinciding with the preferential direction of the longshore current. This currents inversion at Ponta do Tubarão is attributed to the presence of the Ponta do Tubarão island barrier and by the communication channel of the lagoon with the sea. The tide currents are better observed in protected areas, as in the Ponta do Tubarão, when they present inversion in their direction accordingly to the flood and ebb tide. In open areas, as in Barra do Corta-Cachorro, the tide currents are overprinted by the longshore currents. Sediment analysis does not show important modifications in grain size related to seasonality (dry- and rainy seasons). On the foreshore and backshore zones, the sediments vary from fine to medium sand, while in the shoreface they very from fine to very sands. The grains are mostly spheres, varying from sub rounded to sub angled. Quartz is the main component alongside Feldspat and heavy minerals as accessory components. Biogenic content is also present and mainly represented by mollusks fragments. The calculated sediment transport show values around 100 m3/day. The morphodynamic studies indicated that this is a reflexive area from October to April, and intermediate from May to September. The Relative Tide Range-RTR for this area is 4 < RTR < 15, and so classified in the mixed wave-tide group. Having this exposed we can affirm that the more active natural factors in this area are the currents, followed by the tides and the winds. The anthropic factors are exclusively local and punctual (Macau and Serra Oil Field). Taking in account the economic importance of the area, as well as the intensity of coastal processes acting on this shore, it is important a continuity of the monthly environmental monitoring looking for variations on longer-period cycles. These data have been stored on the geo-referenced database of the projects MARPETRO and PETRORISCO (REDE 05), aiming to model the coastal and sea environment, susceptible to oil spills and their derivatives
Resumo:
This work aims to analyze the local cuisine as an element of territorial identity from Seridó Rio Grande do Norte State in the contemporaneousness - XXI century, where it takes place one motion, seemly contradictory, yet dialogical, in the way of eating locally is modified by food diversity and yet is lauded as an element of resistance, that is, of identification. Based on the perspective that groups go over time outlining on the territory their eating cultural characteristics, we have noticed that the spatiality from the local cuisine has happened during the territorial structuring process, being susceptible to the social, economical and technological changes, that hover over this space. On the unfolding days it was created a whole semiology around the cookery , incorporating to its territory of living, symbols, images, knowledge, tastes, feelings and smells that legitimate a way of being, better saying, of eating. But not all of the plates that congregate these aspects, only the oldest, the most emblematic. Within the diverse intercrossing of culture at Seridó region, they are the ones that maintain the vinculum from the group with its culture and with its territory, reminding what they are, or at least what they were, conferring them a legitimacy before those to whom they relate. The cookery from the Seridó region, this way is a cultural geo-symbol that turn this space significant and visible, for ordering the inside characteristics from the group before the new socio-cultural models present in the territory
Resumo:
Despite the numerous advantages resulting from the use of membrane filters technology, intrinsic limitations fouling process become relevant to its applicability. The control of operating conditions is an important tool to mitigate fouling and achieve good levels of efficiency. In this sense, the objective of this study was to investigate the effect of transmembrane pressure and concentrate flow in the performance of ultrafiltration, applied to the post-treatment of domestic sewage. The process was evaluated and optimized by varying the pressure (0.5 and 1.5 bar) and the concentrate flow (300 and 600 L/h), using a 22 factorial design, in order to investigate the effects on the permeate flow and quality of effluents generated at each operating condition. We evaluated the following quality indicators for permeate: pH, electrical conductivity, total suspended solids, turbidity, calcium and Chemical Oxygen Demand (COD). In all tests, we observed marked reduction in the permeate flux at the early stages, followed by a slow decline that lasted until it reaches a relatively constant level, around 120 minutes of filtration. The increased pressure resulted in a higher initial permeate flux, but the decrease of the flow with time is greater for tests at higher pressure, indicating a more pronounced fouling process. On the other hand, increasing the concentrate flow resulted in a slower decline in permeate flux with the filtration time. Regarding the quality of permeate, the transmembrane pressure of 0,5 bar was the one that allowed better results, and was statistically confirmed through the two-way ANOVA test with repeated measures, significant effect of pressure on the turbidity of the permeate. The concentrate flow, in turn, showed no significant influence on any of the quality parameters. Thus, we conclude that, from an economic and environmental point of view, it is more interesting to operate ultrafiltration membrane system with a lower concentrate flow associated with a low transmembrane pressure, since under these conditions will produce less waste, and the permeate will present lower concentrations of the analyzed constituent, especially lower turbidity.
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment