9 resultados para Tertullian, approximately 160-approximately 230
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents
Resumo:
Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure
Resumo:
An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)
Resumo:
In northeastern semiarid, seasonality on precipitation temporal distribution, high intensity storm events and inadequate management of native vegetation can promote soil erosion. Vegetation removal causes soil surface exposure, reduces soil water storage capacity and can be the source degradation processes. In this context, this approach aims to analyze water and soil erosion processes on a 250 m2 undisturbed experimental plot with native vegetation, slope 2.5% by using 2006 and 2007 monitoring data. The site was instrumented to monitor rainfall, overland flow runoff and erosion by using a 5 m³ tank downstream the plot. Soil erosion monitoring was made by transported sediment and organic matter collection after each event. Field infiltration experiments were made at 16 points randomly distributed within the plot area by using a constant head infiltrometer during drought and rainy seasons, respectively. Infiltration data revealed high spatial and temporal variability. It was observed that during the beginning of the rainy period, 77% of the events showed runoff coefficient less than 0.05. As the rainy season began, soil water increase produced annual species germination. High intensity storms resulted in runoff coefficients varying between 0.33 and 0.42. Once the annual species was established, it was observed that approximately 39% of the events produced no runoff, which reflects an increase on soil water retention capacity caused by the vegetation. A gradual runoff reduction during the rainy season emphasizes the effect of vegetative density increase. Soil erosion observed data allowed to fit an empirical relationship involving soil loss and precipitation height, which was used to analyze the plot installation impact on soil erosion. Observed soil loss in 2006 and 2007 was 230 Kg/ha and 54 Kg/ha, respectively
Resumo:
The contamination of the waters resources for wastewater from industrial, agricultural, and domestic sources is a serious environment problem, compromising its use for human consumption and agriculture. The Extremoz-RN Lake is an important freshwater source for the supply of the city of Natal, supplying a population of approximately 160,000 habitants. This aquatic body is located near an industrial pole which can be a serious risk factor for quality of its waters. The objectives of this study were examined the genotoxicity of Extremoz Lake between September of 2006 and January of 2008, by a combination of the Allium micronucleus test, piscine micronucleus test and the comet assay in erythrocytes from peripheral blood of Oreochromis niloticus. Additionally, the level of eight different heavy metals was quantified through spectrometry of atomic absorption of flame. The Allium test did not detect increase in the frequencies of micronucleus in none of the analyzed periods, however a strong cytotoxic activity was demonstrated for decrease in mitotic index in the analyses carried in April and July of 2007. Negative results had been detected in the frequencies of micronucleus in O. niloticus. A statistic significant increase was observed in the levels of DNA damage in comet assay carried in July of 2007. The results of the chemical analysis had detected increase in the levels of cadmium, chromium, copper, nickel, lead and zinc in different periods. These results demonstrated an alteration of the water s quality of the Extremoz Lake caused for the contamination for heavy metals and increase of DNA strand breaks. The use of biomonitoring program of the heavy metal and other pollutants with genotoxic potential combinated with genotoxicity assays is recommends.
Resumo:
This thesis focuses on the coprecipitation synthesis method for preparation of ceramic materials with perovskite structure, their characterization and application as catalytic material in the reaction of converting CO to CO2 developing a methodological alternative route of synthesis from the middle via oxalate coprecipitation material SrCo0,8Fe0,2O3-d. In order to check the influence of this method, it was also synthesized using a combined citrate - EDTA complexing method. The material was characterized by: X-ray diffraction (XRD), Rietveld refinement method, thermogravimetry and differential thermo analysis (TG / DTA), scanning (SEM) and transmission (TEM) electron microscopy, particle size distribution and surface analysis method BET. Both methods led to post-phase synthesis, with pH as a relevant parameter. The synthesis based on the method via oxalate coprecipitation among particles led to the crystalline phase as those obtained using a combined citrate - EDTA complexing method under the same conditions of heat treatment. The nature of the reagent used via oxalate coprecipitation method produced a material with approximately 80 % lower than the average size of crystallites. Moreover, the via oxalate coprecipitation method precursors obtained in the solid state at low temperature (~ 26 oC), shorter synthesis, greater thermal stability and a higher yield of around 90-95 %, maintaining the same order of magnitude the crystallite size that the combined citrate - EDTA complexing method. For purposes of comparing the catalytic properties of the material was also synthesized by the using a combined citrate - EDTA complexing method. The evaluation of catalytic materials SrCo0,8Fe0,2O3-d LaNi0,3Co0,7O3-d was accompanied on the oxidation of CO to CO2 using a stainless steel tubular reactor in the temperature range of 75-300 oC. The conversion CO gas was evaluated in both materials on the results shaved that the firm conversion was loves for the material LaNi0,3Co0,7O3-d
Resumo:
Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure