8 resultados para Stereo photometry
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In the recovering process of oil, rock heterogeneity has a huge impact on how fluids move in the field, defining how much oil can be recovered. In order to study this variability, percolation theory, which describes phenomena involving geometry and connectivity are the bases, is a very useful model. Result of percolation is tridimensional data and have no physical meaning until visualized in form of images or animations. Although a lot of powerful and sophisticated visualization tools have been developed, they focus on generation of planar 2D images. In order to interpret data as they would be in the real world, virtual reality techniques using stereo images could be used. In this work we propose an interactive and helpful tool, named ZSweepVR, based on virtual reality techniques that allows a better comprehension of volumetric data generated by simulation of dynamic percolation. The developed system has the ability to render images using two different techniques: surface rendering and volume rendering. Surface rendering is accomplished by OpenGL directives and volume rendering is accomplished by the Zsweep direct volume rendering engine. In the case of volumetric rendering, we implemented an algorithm to generate stereo images. We also propose enhancements in the original percolation algorithm in order to get a better performance. We applied our developed tools to a mature field database, obtaining satisfactory results. The use of stereoscopic and volumetric images brought valuable contributions for the interpretation and clustering formation analysis in percolation, what certainly could lead to better decisions about the exploration and recovery process in oil fields
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
This work introduces a new method for environment mapping with three-dimensional information from visual information for robotic accurate navigation. Many approaches of 3D mapping using occupancy grid typically requires high computacional effort to both build and store the map. We introduce an 2.5-D occupancy-elevation grid mapping, which is a discrete mapping approach, where each cell stores the occupancy probability, the height of the terrain at current place in the environment and the variance of this height. This 2.5-dimensional representation allows that a mobile robot to know whether a place in the environment is occupied by an obstacle and the height of this obstacle, thus, it can decide if is possible to traverse the obstacle. Sensorial informations necessary to construct the map is provided by a stereo vision system, which has been modeled with a robust probabilistic approach, considering the noise present in the stereo processing. The resulting maps favors the execution of tasks like decision making in the autonomous navigation, exploration, localization and path planning. Experiments carried out with a real mobile robots demonstrates that this proposed approach yields useful maps for robot autonomous navigation
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
Resumo:
We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time
Resumo:
This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms
Resumo:
Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation
Resumo:
In this work we propose a technique that uses uncontrolled small format aerial images, or SFAI, and stereohotogrammetry techniques to construct georeferenced mosaics. Images are obtained using a simple digital camera coupled with a radio controlled (RC) helicopter. Techniques for removing common distortions are applied and the relative orientation of the models are recovered using projective geometry. Ground truth points are used to get absolute orientation, plus a definition of scale and a coordinate system which relates image measures to the ground. The mosaic is read into a GIS system, providing useful information to different types of users, such as researchers, governmental agencies, employees, fishermen and tourism enterprises. Results are reported, illustrating the applicability of the system. The main contribution is the generation of georeferenced mosaics using SFAIs, which have not yet broadly explored in cartography projects. The proposed architecture presents a viable and much less expensive solution, when compared to systems using controlled pictures