13 resultados para Spectroscopy of atoms
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions
Resumo:
Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1
Resumo:
Biodiesel is a fuel obtained from vegetable oils, such as soy, castorbean, among others. The monoester of fatty acid of these oils have chains with mono, di and tri double connections. The presence of these insaturations are susceptible to oxidization. Antioxidants are substances able to prevent oxidization from oils, fats, fat foods, as well as esters of Alquila( biodiesel). The objective of this work is to summarize a new antioxidant from the Cashew Nut Shell Liquid (CNSL) using the electrolysis technique. A current of 2 amperes was used in a single cell of only one group and two eletrodos of stainless steel 304 in a solution of methanol, together with the eletrolits: acetic acid, sodium chloride and sodium hydroxide, for two hours of agitation. The electrolysis products are characterized by the techniques of cromatography in a thin layer, spectroscopy of infrared and gravimetric analysis. The material was submitted to tests of oxidative stability made by the techniques of spectropy of impendancy and Rancimat (EN 14112). The analyses of characterization suggest that the polimerization of the electrolytic material ocurred. The application results of these materials as antioxidants of soy biodiesel showed that the order of the oxidative stability was obtained by both techniques used
Resumo:
In this work, ceramic powders belonging to the system Nd2-xSrxNiO4 (x = 0, 0.4, 0.8, 1.2 and 1.6) were synthesized for their use as catalysts to syngas production partial. It was used a synthesis route, relatively new, which makes use of gelatin as organic precursor. The powders were analyzed at several temperatures in order to obtain the perovskite phase and characterized by several techniques such as thermal analysis, X-rays diffraction, Rietveld refinement method, specific surface area, scanning electron microscopy, energy dispersive spectroscopy of X-rays and temperature programmed reduction. The results obtained using these techniques confirmed the feasibility of the synthesis method employed to obtain nanosized particles. The powders were tested in differential catalytic conditions for dry reforming of methane (DRM) and partial oxidation of methane (POM), then, some systems were chosen for catalytic integrals test for (POM) indicating that the system Nd2-xSrxNiO4 for x = 0, 0.4 and 1.2 calcined at 900 °C exhibit catalytic activity on the investigated experimental conditions in this work without showing signs of deactivation
Resumo:
Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water
Resumo:
Ferritin is a protein composed of heavy and light chains, non-covalently linked and which accommodates, in its core, thousands of atoms of iron. Furthermore, this protein represents the stock of iron in the body and it is characterized as an acute marker and predictor of diseases, such as iron deficiency anemia, hereditary hemochromatosis and others. Considering the variability of reference values and the analytical methods currently available, the aim of this work was to propose 95% confidence intervals for adults in the State of Rio Grande do Norte, Brazil, after determining the average concentration of serum ferritin for both sexes, beyond its correlation with the age. We analyzed 385 blood samples, collected by venipuncture from individuals residing in the State, after 12-14 hours of fast. The populational sample had 169 men and 216 women between 18-59 years old, which filled a questionnaire on socioeconomic, food habits and accounts about previous and current diseases. The sample collections were itinerant and the results of erythrogram, fasting glucose, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, urea, creatinine, leukocyte count and platelets, beyond C-reactive protein, were issued to each participant, so that, after selection of the apparently healthy individuals, the dosage of serum ferritin was carried out. Statistical analysis was performed using the softwares SPSS 11.0 Windows version, Epi Info 3.3.2 and Graf instant pad (version 3.02), and the random population sample was single (finite population), for which the test of linear correlation and diagram of dispersion were also made. After selection of individuals and determination of serum ferritin, the most discrepant outliers were disregarded (N = 358, Men = 154/Women = 207) and the average value determined for the masculine sex individuals was 167,18 ng / dL; for the feminine sex individuals, the average value obtained was 81,55 ng / dL. Moreover, we found that 25% of men had values < 90,30 ng / dL; 50% ≤ 156,25 ng / dL and 75% ≤ 229,00 ng / dL. In the group of women, 25% had values < 38,80 ng / dL; 50% ≤ 65,00 ng / dL and 75% ≤ 119,00 ng / dL. Through the correlation coefficient (r = 0,23 with p = 0,003), it is possible to suggest the existence of positive linear correlation between age and serum ferritin for men. The correlation coefficient for women (r = 0,16 with p = 0,025) also confirms the existence of positive linear correlation between serum ferritin and age. Considering the analysis carried out and specific methods corroborating with the proposed benchmarks, we concluded that the average value found for men is higher than that found for women. Furthermore, this scenario rises with age for both sexes, and the 95% confidence intervals obtained were 74 ng/dL ≤ μ ≤ 89 ng/dL and 152ng/dL ≤ μ ≤183ng/dL for the feminine and masculine sex individuals respectively
Resumo:
The concept of freedom and his presupposition, the free will or libera voluntas in Lucretius relies on the notion of clinamen (declination), an occasional and random motion of atoms, inaccessible to experience. It is endowed with a complex movement provided by spontaneity, without the need for mechanical causes. The action of perceiving (sensus) is selfconsciousness, according to which this will, illuminated by previous experiences (sensory, intellectual or emotional) of the soul, takes advantage of the freedom and own spontaneity of atomic motions to drive them to a perceived direction and chosen. On the other hand, if we consider that the declination has a predominant role for the acts of will, we are facing other problems and questions. There is always the choice of a determined action and, therefore, even if the individual is facing a need to act, is possible choose to do not continue finish this action. Thereby, the will is related to conditions that are originate, ultimately, from the images formed randomly in space and impress the soul: the simulacra of desire and pleasure. The declination itself is a very important notion in this research, in order to emphasize the relationship between the freedom and the kinetic of elements. The approach developed in this work had as main objective to investigate the philosophy of nature and the soul in Lucretius, their constituents and movement, as well as demonstrating how the notion of clinamen articulates with the concepts of image, desire and pleasure, proposing a possible interpretation for the declination as an indeterminate and ethical foundation of freedom
Resumo:
Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed
Resumo:
In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst
Resumo:
This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions
Resumo:
This work aims to detect polycyclic aromatic hydrocarbons (PAHs) through optimized analytical techniques, such as gas chromatography with flame-ionisation detector (CGFID), gas chromatography coupled to mass spectrometry (CGMS), Fluorescence Spectroscopy of Molecular and Purpot of oils and greases (POG). Apply to chemometrics, Factorial Planning 23, in the preparation of samples by liquid-liquid extraction. The sample preparation was used for liquid-liquid extraction and factors in this sample was used for the application of factorial planning 23, such as the use of ultrasound, solvents (dichloromethane, hexane and chloroform) and ratio of solvent / synthetic sample. These factors were assigned two types of levels: positive and negative. It was used to form the cube to better analyze the answers. The responses of the eight combinations were obtained in reading the spectrofluorimetric. The optimization of equipment were used, and they served in the HPA's identification of the samples collected in Rio Potengi. The optimization of the equipment was observed every 16's and PAH in the samples was found that the HPA's came from contamination of the Rio Potengi. The contamination comes through organic household waste, hospital waste, and among other contamination that comes from industries that are installed around the River The factorial design of high validity, it was observed a more effective sample preparation. The factorial design of liquid-liquid extraction showed a way to spend less solvent in less time using an ideal solvent, but also a way to extract more analyte from the matrix itself is water. In planning a smaller form factor extraction was the use of ultrasound, the ratio 1:3 corresponding to a solvent and sample 3 and the best solvent was dichloromethane who presented a viable extraction, not discarding the possibility of using also the hexane. The chloroform and may be toxic not had a good extraction
Resumo:
The present work aims to study the theoretical level of some processes employed in the refining of petroleum fractions and tertiary recovery of this fluid. In the third chapter, we investigate a method of hydrogenation of oil fractions by QTAIM (Quantum Theory of Atoms in Molecules) and thermodynamic parameters. The study of hydrogenation reactions, and the stability of the products formed, is directly related to product improvement in the petrochemical refining. In the fourth chapter, we study the theoretical level of intermolecular interactions that occur in the process of tertiary oil recovery, or competitive interactions involving molecules of non-ionic surfactants, oil and quartz rock where oil is accumulated. Calculations were developed using the semiempirical PM3 method (Parametric Model 3). We studied a set of ten non-ionic surfactants, natural and synthetic origin. The study of rock-surfactant interactions was performed on the surface of the quartz (001) completely hydroxylated. Results were obtained energetic and geometric orientations of various surfactants on quartz. QTAIM was obtained through the analysis of the electron density of interactions, and thus, providing details about the formation of hydrogen bonds and hydrogen-hydrogen systems studied. The results show that the adsorption of ethoxylated surfactants in the rock surface occurs through the hydrogen bonding of the type CH---O, and surfactants derivatives of polyols occurs by OH---O bonds. For structures adsorption studied, the large distance of the surfactant to the surface together with the low values of charge density, indicate that there is a very low interaction, characterizing physical adsorption in all surfactants studied. We demonstrated that surfactants with polar group comprising oxyethylene units, showed the lowest adsorption onto the surface of quartz, unlike the derivatives of polyols
Resumo:
The aromaticity index is an important tool for the investigation of aromatic molecules. This work consists on new applications of the aromaticity index developed by teacher Caio Lima Firme, so-called D3BIA (density, delocalization, degeneracy-based index of aromaticity). It was investigated its correlation with other well-known aromaticity indexes, such as HOMA (harmonic oscillator model of aromaticity), NICS (nucleus independent chemical shielding), PDI (para-delocalization index), magnetic susceptibility (), and energetic factor in the study of aromaticity of acenes and homoaromatic species based on bisnoradamantanyl cage. The density functional theory (DFT) was used for optimization calculations and for obtaining energetic factors associated with aromaticity and indexes HOMA and NICS. From quantum theory of atoms in molecules (QTAIM) it was obtained the indexes D3BIA, PDI and . For acenes, when the over-mentioned indexes were applied it was observed no correlation except for D3BIA and HOMA (R2=0.752). For bisnoradamantenyl dication and its derivatives, it was obtained a good correlation between D3BIA and NICS. Moreover, it was evaluated solely one of the factors used on D3BIA calculation, the delocalization index uniformity (DIU), so as to investigate its possible influence on stability of chemical species. Then, the DIU was compared with the formation Gibbs free energy of some pairs of carbocations, isomers or not, which each pair had small difference in point group symmetry and no difference among other well-known stability factors. The obtained results indicate that DIU is a new stability factor related to carbocations, that is, the more uniform the electron density delocalization, the more stable the is carbocation. The results of this work validate D3BIA and show its importance on the concept of aromaticity, indicating that it can be understood from degeneracy of atoms belonging the aromatic site, the electronic density in the aromatic site and the degree of uniformity of electron delocalization