17 resultados para Specification and description Language
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
COSTA, Umberto Souza da; MOREIRA, Anamaria Martins; MUSICANTE, Martin A. Specification and Runtime Verification of Java Card Programs. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2009.
Resumo:
COSTA, Umberto Souza da; MOREIRA, Anamaria Martins; MUSICANTE, Martin A. Specification and Runtime Verification of Java Card Programs. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2009.
Resumo:
This work presents the specification and the implementation of a language of Transformations in definite Models specification MOF (Meta Object Facility) of OMG (Object Management Group). The specification uses a boarding based on rules ECA (Event-Condition-Action) and was made on the basis of a set of scenes of use previously defined. The Parser Responsible parser for guaranteeing that the syntactic structure of the language is correct was constructed with the tool JavaCC (Java Compiler Compiler) and the description of the syntax of the language was made with EBNF (Extended Backus-Naur Form). The implementation is divided in three parts: the creation of the interpretative program properly said in Java, the creation of an executor of the actions specified in the language and its integration with the type of considered repository (generated for tool DSTC dMOF). A final prototype was developed and tested in the scenes previously defined
Resumo:
This work presents an ontology to describe the semantics of IMML (Interactive Message Modeling Language) an XML-based User Interface Description Language. The ontology presents the description of all IMML elements including a natural language description and semantic rules and relationships. The ontology is implemented in OWL-DL, a standard language to ontology description that is recommended by W3C. Our main goal is to describe the semantic using languages and tools that can be processed by computers. As a consequence, we develop tools to the validation of a user interface specification and also to present the semantic description in different views
Resumo:
Removing inconsistencies in a project is a less expensive activity when done in the early steps of design. The use of formal methods improves the understanding of systems. They have various techniques such as formal specification and verification to identify these problems in the initial stages of a project. However, the transformation from a formal specification into a programming language is a non-trivial task and error prone, specially when done manually. The aid of tools at this stage can bring great benefits to the final product to be developed. This paper proposes the extension of a tool whose focus is the automatic translation of specifications written in CSPM into Handel-C. CSP is a formal description language suitable for concurrent systems, and CSPM is the notation used in tools support. Handel-C is a programming language whose result can be compiled directly into FPGA s. Our extension increases the number of CSPM operators accepted by the tool, allowing the user to define local processes, to rename channels in a process and to use Boolean guards on external choices. In addition, we also propose the implementation of a communication protocol that eliminates some restrictions on parallel composition of processes in the translation into Handel-C, allowing communication in a same channel between multiple processes to be mapped in a consistent manner and that improper communication in a channel does not ocurr in the generated code, ie, communications that are not allowed in the system specification
Resumo:
The opening of the Brazilian market of electricity and competitiveness between companies in the energy sector make the search for useful information and tools that will assist in decision making activities, increase by the concessionaires. An important source of knowledge for these utilities is the time series of energy demand. The identification of behavior patterns and description of events become important for the planning execution, seeking improvements in service quality and financial benefits. This dissertation presents a methodology based on mining and representation tools of time series, in order to extract knowledge that relate series of electricity demand in various substations connected of a electric utility. The method exploits the relationship of duration, coincidence and partial order of events in multi-dimensionals time series. To represent the knowledge is used the language proposed by Mörchen (2005) called Time Series Knowledge Representation (TSKR). We conducted a case study using time series of energy demand of 8 substations interconnected by a ring system, which feeds the metropolitan area of Goiânia-GO, provided by CELG (Companhia Energética de Goiás), responsible for the service of power distribution in the state of Goiás (Brazil). Using the proposed methodology were extracted three levels of knowledge that describe the behavior of the system studied, representing clearly the system dynamics, becoming a tool to assist planning activities
Resumo:
Java Card technology allows the development and execution of small applications embedded in smart cards. A Java Card application is composed of an external card client and of an application in the card that implements the services available to the client by means of an Application Programming Interface (API). Usually, these applications manipulate and store important information, such as cash and confidential data of their owners. Thus, it is necessary to adopt rigor on developing a smart card application to improve its quality and trustworthiness. The use of formal methods on the development of these applications is a way to reach these quality requirements. The B method is one of the many formal methods for system specification. The development in B starts with the functional specification of the system, continues with the application of some optional refinements to the specification and, from the last level of refinement, it is possible to generate code for some programming language. The B formalism has a good tool support and its application to Java Card is adequate since the specification and development of APIs is one of the major applications of B. The BSmart method proposed here aims to promote the rigorous development of Java Card applications up to the generation of its code, based on the refinement of its formal specification described in the B notation. This development is supported by the BSmart tool, that is composed of some programs that automate each stage of the method; and by a library of B modules and Java Card classes that model primitive types, essential Java Card API classes and reusable data structures
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform
Resumo:
The increase of applications complexity has demanded hardware even more flexible and able to achieve higher performance. Traditional hardware solutions have not been successful in providing these applications constraints. General purpose processors have inherent flexibility, since they perform several tasks, however, they can not reach high performance when compared to application-specific devices. Moreover, since application-specific devices perform only few tasks, they achieve high performance, although they have less flexibility. Reconfigurable architectures emerged as an alternative to traditional approaches and have become an area of rising interest over the last decades. The purpose of this new paradigm is to modify the device s behavior according to the application. Thus, it is possible to balance flexibility and performance and also to attend the applications constraints. This work presents the design and implementation of a coarse grained hybrid reconfigurable architecture to stream-based applications. The architecture, named RoSA, consists of a reconfigurable logic attached to a processor. Its goal is to exploit the instruction level parallelism from intensive data-flow applications to accelerate the application s execution on the reconfigurable logic. The instruction level parallelism extraction is done at compile time, thus, this work also presents an optimization phase to the RoSA architecture to be included in the GCC compiler. To design the architecture, this work also presents a methodology based on hardware reuse of datapaths, named RoSE. RoSE aims to visualize the reconfigurable units through reusability levels, which provides area saving and datapath simplification. The architecture presented was implemented in hardware description language (VHDL). It was validated through simulations and prototyping. To characterize performance analysis some benchmarks were used and they demonstrated a speedup of 11x on the execution of some applications
Resumo:
The software development processes proposed by the most recent approaches in Software Engineering make use old models. UML was proposed as the standard language for modeling. The user interface is an important part of the software and has a fundamental importance to improve its usability. Unfortunately the standard UML does not offer appropriate resources to model user interfaces. Some proposals have already been proposed to solve this problem: some authors have been using models in the development of interfaces (Model Based Development) and some proposals to extend UML have been elaborated. But none of them considers the theoretical perspective presented by the semiotic engineering, that considers that, through the system, the designer should be able to communicate to the user what he can do, and how to use the system itself. This work presents Visual IMML, an UML Profile that emphasizes the aspects of the semiotic engineering. This Profile is based on IMML, that is a declarative textual language. The Visual IMML is a proposal that aims to improve the specification process by using a visual modeling (using diagrams) language. It proposes a new set of modeling elements (stereotypes) specifically designed to the specification and documentation of user interfaces, considering the aspects of communication, interaction and functionality in an integrated manner
Resumo:
With the increasing complexity of software systems, there is also an increased concern about its faults. These faults can cause financial losses and even loss of life. Therefore, we propose in this paper the minimization of faults in software by using formally specified tests. The combination of testing and formal specifications is gaining strength in searches mainly through the MBT (Model-Based Testing). The development of software from formal specifications, when the whole process of refinement is done rigorously, ensures that what is specified in the application will be implemented. Thus, the implementation generated from these specifications would accurately depict what was specified. But not always the specification is refined to the level of implementation and code generation, and in these cases the tests generated from the specification tend to find fault. Additionally, the generation of so-called "invalid tests", ie tests that exercise the application scenarios that were not addressed in the specification, complements more significantly the formal development process. Therefore, this paper proposes a method for generating tests from B formal specifications. This method was structured in pseudo-code. The method is based on the systematization of the techniques of black box testing of boundary value analysis, equivalence partitioning, as well as the technique of orthogonal pairs. The method was applied to a B specification and B test machines that generate test cases independent of implementation language were generated. Aiming to validate the method, test cases were transformed manually in JUnit test cases and the application, created from the B specification and developed in Java, was tested. Faults were found with the execution of the JUnit test cases
Resumo:
Distributed multimedia systems have highly variable characteristics, resulting in new requirements while new technologies become available or in the need for adequacy in accordance with the amount of available resources. So, these systems should provide support for dynamic adaptations in order to adjust their structures and behaviors at runtime. This paper presents an approach to adaptation model-based and proposes a reflective and component-based framework for construction and support of self-adaptive distributed multimedia systems, providing many facilities for the development and evolution of such systems, such as dynamic adaptation. The propose is to keep one or more models to represent the system at runtime, so some external entity can perform an analysis of these models by identifying problems and trying to solve them. These models integrate the reflective meta-level, acting as a system self-representation. The framework defines a meta-model for description of self-adaptive distributed multimedia applications, which can represent components and their relationships, policies for QoS specification and adaptation actions. Additionally, this paper proposes an ADL and architecture for model-based adaptation. As a case study, this paper presents some scenarios to demonstrate the application of the framework in practice, with and without the use of ADL, as well as check some characteristics related to dynamic adaptation
Resumo:
Aspect-Oriented Software Development (AOSD) is a technique that complements the Object- Oriented Software Development (OOSD) modularizing several concepts that OOSD approaches do not modularize appropriately. However, the current state-of-the art on AOSD suffers with software evolution, mainly because aspect definition can stop to work correctly when base elements evolve. A promising approach to deal with that problem is the definition of model-based pointcuts, where pointcuts are defined based on a conceptual model. That strategy makes pointcut less prone to software evolution than model-base elements. Based on that strategy, this work defines a conceptual model at high abstraction level where we can specify software patterns and architectures that through Model Driven Development techniques they can be instantiated and composed in architecture description language that allows aspect modeling at architecture level. Our MDD approach allows propagate concepts in architecture level to another abstraction levels (design level, for example) through MDA transformation rules. Also, this work shows a plug-in implemented to Eclipse platform called AOADLwithCM. That plug-in was created to support our development process. The AOADLwithCM plug-in was used to describe a case study based on MobileMedia System. MobileMedia case study shows step-by-step how the Conceptual Model approach could minimize Pointcut Fragile Problems, due to software evolution. MobileMedia case study was used as input to analyses evolutions on software according to software metrics proposed by KHATCHADOURIAN, GREENWOOD and RASHID. Also, we analyze how evolution in base model could affect maintenance on aspectual model with and without Conceptual Model approaches
Resumo:
Self-adaptive software system is able to change its structure and/or behavior at runtime due to changes in their requirements, environment or components. One way to archieve self-adaptation is the use a sequence of actions (known as adaptation plans) which are typically defined at design time. This is the approach adopted by Cosmos - a Framework to support the configuration and management of resources in distributed environments. In order to deal with the variability inherent of self-adaptive systems, such as, the appearance of new components that allow the establishment of configurations that were not envisioned at development time, this dissertation aims to give Cosmos the capability of generating adaptation plans of runtime. In this way, it was necessary to perform a reengineering of the Cosmos Framework in order to allow its integration with a mechanism for the dynamic generation of adaptation plans. In this context, our work has been focused on conducting a reengineering of Cosmos. Among the changes made to in the Cosmos, we can highlight: changes in the metamodel used to represent components and applications, which has been redefined based on an architectural description language. These changes were propagated to the implementation of a new Cosmos prototype, which was then used for developing a case study application for purpose of proof of concept. Another effort undertaken was to make Cosmos more attractive by integrating it with another platform, in the case of this dissertation, the OSGi platform, which is well-known and accepted by the industry
Resumo:
Web services are software units that allow access to one or more resources, supporting the deployment of business processes in the Web. They use well-defined interfaces, using web standard protocols, making possible the communication between entities implemented on different platforms. Due to these features, Web services can be integrated as services compositions to form more robust loose coupling applications. Web services are subject to failures, unwanted situations that may compromise the business process partially or completely. Failures can occur both in the design of compositions as in the execution of compositions. As a result, it is essential to create mechanisms to make the implementation of service compositions more robust and to treat failures. Specifically, we propose the support for fault recovery in service compositions described in PEWS language and executed on PEWS-AM, an graph reduction machine. To support recovery failure on PEWS-AM, we extend the PEWS language specification and adapted the rules of translation and reduction of graphs for this machine. These contributions were made both in the model of abstract machine as at the implementation level