4 resultados para Solution Space

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Product derivation tools are responsible for automating the development process of software product lines. The configuration knowledge, which is responsible for mapping the problem space to the solution space, plays a fundamental role on product derivation approaches. Each product derivation approach adopts different strategies and techniques to manage the existing variabilities in code assets. There is a lack of empirical studies to analyze these different approaches. This dissertation has the aim of comparing systematically automatic product derivation approaches through of the development of two different empirical studies. The studies are analyzed under two perspectives: (i) qualitative that analyzes the characteristics of approaches using specific criteria; and (ii) quantitative that quantifies specific properties of product derivation artifacts produced for the different approaches. A set of criteria and metrics are also being proposed with the aim of providing support to the qualitative and quantitative analysis. Two software product lines from the web and mobile application domains are targets of our study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Scientific Algorithms are a new metaheuristics inspired in the scientific research process. The new method introduces the idea of theme to search the solution space of hard problems. The inspiration for this class of algorithms comes from the act of researching that comprises thinking, knowledge sharing and disclosing new ideas. The ideas of the new method are illustrated in the Traveling Salesman Problem. A computational experiment applies the proposed approach to a new variant of the Traveling Salesman Problem named Car Renter Salesman Problem. The results are compared to state-of-the-art algorithms for the latter problem