27 resultados para Solos - Teor de chumbo
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter
Resumo:
There are ores of clay in Piauí State that are used for red structural ceramics, which are naturally contaminated with calcareous vein. This is one thing that impedes its exploration in an adequate way, especially for tile production. The present work aims at verifying the influence of the calcareous contents in the technological structural ceramics area, seeking to determine a maximum permissible calcareous proportion/contents in the ceramic mass using the patterns of the local industry production. For the consecution of this paper, it was characterized the clay and calcareous material by FRX, DRX, TGA and DTA. It was also configurated by extrusion and burnt in the temperatures of 850°C, 900°C, 950°C and 1000°C pieces of the corpus with 0, 5, 10, 15 e 20% of calcareous proportion. After that, it was carried out technological samples of linear retraction, water absortion, apparent porosity, specific apparent mass and mechanic resistance. The results showed the possibility of using calcareous in the ceramic mass and in some cases the technological properties got better
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
The state of Rio Grande do Norte presents a great potentiality for the production of ceramic tiles because of having natural raw material in quantity and quality making its economical exploration possible, beyond the great energetic differential of the state, the natural gás. This works aims to study the influence of the dolomite and granulometry concentration and calcinations temperature in the obtaining of formulations for porous coverings which have to be coherent to the project,s specifications. The experiments have involved the physical-chemical and mineralogical characterizations of raw materials and mechanical tests in the dry and burnt proof bodies preceding a mixture experiment planning with the use of the response surface methodology, in order to get the best raw materials combinations to produce a ceramic mass with specific properties. The twelve ceramic masses studied in this work were prepared by the via dry process, characterized, shaped by uniaxial pressing and sinterized in the temperatures of 940ºC, 1000ºC, 1060ºC, 1120ºC and 1180ºC, using a fast burning cycle. The crystalline phases formed during the sintering in the temperatures in study have revealed the presence of anorthite and diopside beyond quartz with a remaining phase. These phases were the main responsible ones by the physical- mechanical properties of the sinterized proof bodies. The proof bodies after the sintering stage have presented water absorption higher than 10% and a good dimensional stability in all studied temperatures. However, the flexural breaking strength results in the temperatures of 940ºC, 1000ºC and 1060ºC, under the temperature zone of the vitrification of ceramic whiteware do not reach the flexural breaking strength specific for the porous wall tile (15 MPa), but in the temperature of 1120ºC next to the vitrification temperature zone, some whiteware ceramic (formulations) has reached the specified value for the porous wall tile. The results of this work have showed that the studied raw materials have great importance for used in the production of porous wall tiles (BIII)
Resumo:
It is located in an area of increasing oil exploration, the region of the Lower Açu is at the mercy of a possible pollution generated by this economic activity, which includes various chemical substances harmful to health, such as metals. This thesis aims to, diagnose the areas of River Piranhas-Açu, a region of the Lower Açu, which are polluted by traces factors and more. In this study, it was determined the concentration of the chemica elements Al, CD, Cr, Cu, Fe, Mn, Ni, P, Pb, V and Zn, through the technique of ICP-OES analysis and the size of sediments and their contents organic matter. Were mapped by GPS, 12 points from collections. The interpretations of the results, together associating that allowed pollution to a possible contamination by oil activity. The results showed tha some regions have low concentrations of cadmium, lead, copper, manganese and zinc unable to promote damage to human health. However, there are places where the concentrations of certain metals chromium, iron and zinc are moderately polluted compared to the results with the reference values of literature and others that are highly polluted by iron. However, due to a greater number of wells in production in those locations, those higher concentrations, it can be suggested a possible influence of oi production in some areas with concentrations of chromium and lead are higher than the rest of the points of monitoring. Moreover, it is observed that the highest levels of metals found in sediment of finer texture and more organic matter content
Resumo:
Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The herbal medicine Sanativo® is produced by the Pernambucano Laboratory since 1888 with indications of healing and hemostasis. It is composed of a fluid extract about Piptadenia colubrina, Schinus terebinthifolius, Cereus peruvianus and Physalis angulata. Among the plants in their composition, S. terebinthifolius and P. colubrina have in common phenolic compounds which are assigned most of its pharmacological effects. The tannins, gallic acid and catechin were selected as markers for quality control. The aim of this study was the development and validation of analytical method by HPLC/UV/DAD for the separation and simultaneous quantification of gallic acid (GAC) and catechin (CTQ) in Sanativo®. The chromatographic system was to stationary phase, C-18 RP column, 4,6 x 150 mm (5 mm) under a temperature of 35 ° C, detection at 270 and 210 nm. The mobile phase consisted of 0.05% trifluoroacetic acid and methanol in the proportions 88:12 (v/v), a flow rate of 1 ml/min. The analytical method presented a retention factor of 0.30 and 1.36, tail factor of 1.8 and 1.63 for gallic acid and catechin, respectively, resolution of 18.2, and theoretical plates above 2000. The method validation parameters met the requirements of Resolution n º 899 of May 29, 2003, ANVISA. The correlation coefficient of linear regression analysis for GAC and CTQ from the standard solution was 0.9958 and 0.9973 and when performed from the Sanativo® 0.9973 and 0.9936, the matrix does not interfere in the range 70 to 110 %. The limits of detection and quantification for GAC and CQT were 3.25 and 0.863, and 9.57 and 2.55 mg/mL, respectively. The markers, GAC and CQT, showed repetibility (coefficient of variation of 0.94 % and 2.36 %) and satisfactory recovery (100.02 ± 1.11 % and 101.32 ± 1.36 %). The method has been characterized selective and robust quantification of GAC and CTQ in the Sanativo® and was considered validated
Resumo:
The demographic growth press environments that are more susceptible to perturbations, like riparian areas, without knowing about the effects of replacing these natural environments by different land uses on soil quality and, consequently, on watershed. The study of soil quality has evolved as an important tool for soil sustainable management of this component of the biosphere that affects aquatic and terrestrial ecosystems functions. Thus, physical and chemical soil proprieties were measured to assess soil quality under different land uses (agricultural, pasture, urban, industrial and natural vegetation,) in the riparian zone of Extremoz Lake, an important human water source, evaluating whether the soil offers potential risk to water pollution. Data were subjected to descriptive statistics and Principal Component Analysis (PCA). The results showed negative changes in soil quality such as alkalinization and increase in P, Pb, Mn and Zn contents in most anthropized areas. The sandy texture and low organic matter content in all soils showed the fragility of the soil to erosion and leaching of elements in excess to water bodies, evidencing that this soils has potential to diffuse contaminants. Conservative management of soil is necessary to provide an adequate ecological state in riparian zones of the Extremoz Lake, thus allowing controlling and buffering diffuse sources of pollution to this important water supply source
Resumo:
This work presents results of field and laboratory tests using a Dynamic Cone Penetrometer, DCP. The tests were performed in order to evaluate the use of the equipment in sand for the control of bearing capacity of shallow foundations and fill compaction. For shallow foundations, the laboratory tests were conducted on sand placed in a metallic mould by the method of sand pluviation. Although the results show the inability to reproduce field conditions in the laboratory it was possible to verify the ability of the DCP to identify less resistant soil layers. The DCP tests for the analysis of compaction control were performed in a strong box with inside dimensions of 1,40 m x 1,40 m and 0,70 m in height. The soil layers were compacted with different densities though the use of a vibrating plate in order to obtain correlations between penetration index, DPI, and soil relative density. Other tests were also conducted to assess the influence of soil moisture on tests results. Among other findings, the results showed the great potential for the use of DCP to control the compaction of sand fills
Resumo:
Soil improved with the addition of cement have been utilized as an alternative to the construction of various types of geotechnical works, almost always present economic and environmental advantages. This paper presents a study on the usage of cement in the improvement of mechanical properties of sandy soils, characteristic of the region of Natal, collected from its dunes. This research was made in order to analyze the influence of cement content, voids, and also including water immersion and confining pressure. Samples molded from cement-soil mixtures were tested for unconfined compression tests and triaxial tests. The samples had the percentage of cement mixed in 2.5%, 5% and 10% by weight. The cement agent used was the Portland Cement of High Early strength(CPV-ARI), which promoted agility to the experimental procedure for presenting a rapid gain in strenght. The void ratio used ranged from 0.7 (more compact), 0,9 and 1,1(softer). The soil under study can be considered as pure sand. In general, it can be stated that the larger the amount of cement added to the sand studied is, the greater ultimate strength will be. Likewise, as more compact the soil is, the less void ratio and more resistant it will be present. The confining pressure tends to increase the resistance of the specimens. The cementing adopted grades showed that the use of different criteria for failure did not significantly alter the stress-strain parameters for the sand studied. The angle of friction values were found within the typical range of medium and compact sands. Cementing acted in the sand providing an intercepted cohesion which increased enhancing the potential cementation. In triaxial compression tests, the sand with void ratio is equal to 0.7 and showed the expected behavior for a compact sand while the stress-strain behavior of the same sand with the void ratio of 0.9 tended to be expected for the soft sand as well
Resumo:
Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
The underground reservoirs of fuel retailing system represent an environmental threat, because once in bad conservation, these tanks allow fuel leakage and infiltration. For soil contaminated with fuel, such as diesel oil, the present study introduces the microemulsion systems used by the method of washing. In tests carried out in column with a sample of sandy soil artificially contaminated and previously characterized as to its void level to porosity, to permeability which is an important parameter concerning the study of the method of washing. While microemulsions were characterized for their viscosity and wettability, a variation of active matter was also done departing from the original formulation. The hydraulic diffusivity of the microemulsion was studied so as the injection of such fluid in a soil with sandy characteristics. The results of the extractions revealed the excellent performance of these systems which get to remove around 95% of diesel fuel. This proves the efficiency of the microemulsion in the process of removal of diesel fuel from the soil with the advantage of being a system easily obtainable and less aggressive to the environment when compared to organic solvents.
Resumo:
The development of research that aim to reduce or even eliminate the environmental impacts provided by anthropogenic actions. One of these main action is the discard of industrial waste in the biotic compartments such as soil, water and air, gained more space in academic settings and in private. A technique of phytoremediation involving the use of plants (trees, shrubs, creepers and aquatic) and their associated microorganisms in order to remove, degrade or isolate toxic substances to the environment. This study aimed to evaluate the potential for phytoremediation of castor bean (Ricinus communis L.) and sunflower (Helianthus annuus L.), wild crops suitable region of Rio Grande do Norte, to reduce concentrations of lead and toluene present in synthetic wastewater that simulate the characteristics of treated water production originated in the petrochemical Guamaré. The experiment was accomplished in randomized blocks in four replicates. Seeds of BRS Energy for the development of seedlings of castor beans and sunflower for Catissol 01, both provided by EMPARN (Empresa de Pesquisa Agropecuária do Rio Grande do Norte) were used. Lead concentrations tested were 250, 500 and 1000 mg/L called T2, T3 and T4, respectively, for toluene the concentrations used were 125, 256 and 501 μg/L, called T5, T6 and T7, respectively. The data for removal of lead in relation to sewage systems applied in castor bean and sunflower were 43.89 and 51.85% (T2), 73.60 and 73.74% (T3) and 85.66 and 87.80 % (T4), respectively, and toluene were approximately 52.12 and 25.54% (T5), 55.10 and 58.05% (T6) and 79.77 and 74.76% (T7) for castor and sunflower seeds, respectively. From the data obtained, it can be deduce that mechanisms involved in reducing the contaminants were of phytoextraction, in relation to lead and phytodegradation for toluene. However, it can be concluded that the castor bean and sunflower crops can be used in exhaust after-treatment of industrial effluents that have this type of contaminant