18 resultados para Software of dinamic geometry

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to present how the application of fractal geometry to the elements of a log-periodic array can become a good alternative when one wants to reduce the size of the array. Two types of log-periodic arrays were proposed: one with fed by microstrip line and other fed by electromagnetic coupling. To the elements of these arrays were applied fractal Koch contours, at two levels. In order to validate the results obtained some prototypes were built, which were measured on a vector network analyzer and simulated in a software, for comparison. The results presented reductions of 60% in the total area of the arrays, for both types. By analyzing the graphs of return loss, it was observed that the application of fractal contours made different resonant frequencies appear in the arrays. Furthermore, a good agreement was observed between simulated and measured results. The array with feeding by electromagnetic coupling presented, after application of fractal contours, radiation pattern with more smooth forms than the array with feeding by microstrip line

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geological modeling allows, at laboratory scaling, the simulation of the geometric and kinematic evolution of geological structures. The importance of the knowledge of these structures grows when we consider their role in the creation of traps or conduits to oil and water. In the present work we simulated the formation of folds and faults in extensional environment, through physical and numerical modeling, using a sandbox apparatus and MOVE2010 software. The physical modeling of structures developed in the hangingwall of a listric fault, showed the formation of active and inactive axial zones. In consonance with the literature, we verified the formation of a rollover between these two axial zones. The crestal collapse of the anticline formed grabens, limited by secondary faults, perpendicular to the extension, with a curvilinear aspect. Adjacent to these faults we registered the formation of transversal folds, parallel to the extension, characterized by a syncline in the fault hangingwall. We also observed drag folds near the faults surfaces, these faults are parallel to the fault surface and presented an anticline in the footwall and a syncline hangingwall. To observe the influence of geometrical variations (dip and width) in the flat of a flat-ramp fault, we made two experimental series, being the first with the flat varying in dip and width and the second maintaining the flat variation in width but horizontal. These experiments developed secondary faults, perpendicular to the extension, that were grouped in three sets: i) antithetic faults with a curvilinear geometry and synthetic faults, with a more rectilinear geometry, both nucleated in the base of sedimentary pile. The normal antithetic faults can rotate, during the extension, presenting a pseudo-inverse kinematics. ii) Faults nucleated at the top of the sedimentary pile. The propagation of these faults is made through coalescence of segments, originating, sometimes, the formation of relay ramps. iii) Reverse faults, are nucleated in the flat-ramp interface. Comparing the two models we verified that the dip of the flat favors a differentiated nucleation of the faults at the two extremities of the mater fault. V These two flat-ramp models also generated an anticline-syncline pair, drag and transversal folds. The anticline was formed above the flat being sub-parallel to the master fault plane, while the syncline was formed in more distal areas of the fault. Due the geometrical variation of these two folds we can define three structural domains. Using the physical experiments as a template, we also made numerical modeling experiments, with flat-ramp faults presenting variation in the flat. Secondary antithetic, synthetic and reverse faults were generated in both models. The numerical modeling formed two folds, and anticline above the flat and a syncline further away of the master fault. The geometric variation of these two folds allowed the definition of three structural domains parallel to the extension. These data reinforce the physical models. The comparisons between natural data of a flat-ramp fault in the Potiguar basin with the data of physical and numerical simulations, showed that, in both cases, the variation of the geometry of the flat produces, variation in the hangingwall geometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency Selective surfaces are increasingly common structures in telecommunication systems due to their geometric and electromagnetic advantages. As a matter of fact, the frequency selective surfaces with fractal geometry type would allow an even bigger reduction of the electrical length which provided greater flexibility in the design of these structures. In this work, we investigated the use of multifractal geometry in frequency selective surfaces. Three structures with different multifractal geometries have been proposed and analyzed. The first structure allowed the design of multiband structures with greater flexibility in controlling the resonant frequencies and bandwidth. The second structure provided a bandwidth increase even with the rising of the fractal level. The third structure showed response with angle stability, dual polarization and provided room for a bandwidth increase with the rising of the structural multifractality. Furthermore, the proposed structures increased the degree of freedom in the multiband designs because they have multiple resonant frequencies ratios between adjacent bands and are easy to deploy. The validation of the proposed structures was initially verified through simulations in Ansoft Designer software and then the structures were constructed and the experimental results obtained

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aims to show a possible relationship between the use of the History of Mathematics and Information and Communication Technologies (TIC) in teaching Mathematics through activities that use geometric constructions of the “Geometry of the Compass” (1797) by Lorenzo Mascheroni (1750-1800). For this, it was performed a qualitative research characterized by an historical exploration of bibliographical character followed by an empirical intervention based on use of the History of Mathematics combined with TIC through Mathematical Investigation. Thus, studies were performed in papers dealing with the topic, as well as a survey to highlight problems and /or episodes of the history of mathematics that can be solved with the help of TIC, allowing the production of a notebook of activities addressing the resolution of historical problems in a computer environment. In this search, we came across the problems of geometry that are presented by Mascheroni stated previously in the work that we propose solutions and investigations using GeoGebra software. The research resulted in the elaboration of an educational product, a notebook of activities, which was structure to allow during its implementation, students can conduct historical and/or Mathematics research, therefore, we present the procedures for realization of each construction, followed at some moments by original solution of the work. At the same time, we encourage students to investigate/reflect its construction (GeoGebra), in addition to making comparisons with the solution Mascheroni. This notebook was applied to two classes of the course of Didactics of Mathematics I (MAT0367) Course in Mathematics UFRN in 2014. Knowing the existence of some unfavorable arguments regarding the use of history of mathematics, such as loss of time, it was found that this factor can be mitigated with the aid of computational resource, because we can make checks using only the dynamism of and software without repeating the construction. It is noteworthy that the minimized time does not mean loss of reflection or maturation of ideas, when we adopted the process of historical and/or Mathematics Investigation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastline from Rio Grande do Norte state is characterized for the presence of dunes and cliffs. The latter consist of slopes with height up to 40 meters and inclinations ranging from 30° to 90° wich horizontal. Thus, this dissertation had as objective the evaluation of the stability of cliff from Ponta do Pirambu in Tibau do Sul/RN, and the realization of a parametric study on the stability of a homogeneous cliff considering as variables the material's cohesion, the cliff height and the slope inclination. The study in Ponta do Pirambu considered yet the possibility of the existence of a colluvial cover with thickness ranging from 0.50 to 5.00 meters. The analyzes were performed by Bishop method, using GEO5 software. In parametric analysis were produced graphics that relate height cliff with the inclination, to safety factors equals to 1.00 and 1.50; besides graphics where it is possible easily get the lowest safety factor as from the cohesion, cliff height and its inclination. It was concluded that these graphs are very useful to preliminary analyzes, for the definition of critical areas in risk mappings in areas of cliffs and for determination of an equation for obtaining the lowest safety factor function of the strength parameters and of slope geometry. Regarding the cliff from Ponta do Pirambu, the results showed that the cliff is subject to superficial landslides located in the points where may there be the presence of colluvium with thicknesses greater than two meters. However, the cliff remains stable presenting the global safety factor equal or superior to 2.50 in the saturated condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study presents the characteristics of self-efficacy of students of Administration course, who work and do not work. The study was conducted through a field research, descriptive, addressed quantitatively using statistical procedures. Was studied a population composed of 394 students distributed in three Higher Education Institutions, in the metropolitan region of Belém, in the State of Pará. The sampling was not probabilistic by accessibility, with a sample of 254 subjects. The instrument for data collection was a questionnaire composed of a set of questions divided into three sections: the first related to sociodemographic data, the second section was built to identify the work situation of the respondent and the third section was built with issues related to General Perceived Self-Efficacy Scale proposed by Schwarzer and Jerusalem (1999). Sociodemographic data were processed using methods of descriptive statistics. This procedure allowed characterizing the subjects of the sample. To identify the work situation, the analysis of frequency and percentage was used, which allowed to classify in percentage, the respondents who worked and those that did not work, and the data related to the scale of self-efficacy were processed quantitatively by the method of multivariate statistics using the software of program Statistical Package for Social Sciences for Windows - SPSS, version 17 from the process of Exploratory Factor Analysis. This procedure allowed characterizing the students who worked and the students who did not worked. The results were discussed based on Social Cognitive Theory from the construct of self-efficacy of Albert Bandura (1977). The study results showed a young sample, composed the majority of single women with work experience, and indicated that the characteristics of self-efficacy of students who work and students who do not work are different. The self-efficacy beliefs of students who do not work are based on psychological expectations, whereas the students who work demonstrated that their efficacy beliefs are sustained by previous experiences. A student who does not work proved to be reliant in their abilities to achieve a successful performance in their activities, believing it to be easy to achieve your goals and to face difficult situations at work, simply by invest a necessary effort and trust in their abilities. One who has experience working proved to be reliant in their abilities to conduct courses of action, although know that it is not easy to achieve your goals, and in unexpected situations showed its ability to solve difficult problems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis represents a didactic research linked to the Post-graduation Programme in Education of the Universidade Federal do Rio Grande do Norte which aimed to approach the construction of the geometrical concepts of Volume of the Rectangular Parallelepiped, Area and Perimeter of the Rectangle adding a study of the Area of the Circle. The research was developed along with students from the 6th level of the Elementary School, in a public school in Natal/RN. The pedagogical intervention was made up of three moments: application of a diagnostic evaluation, instrument that enabled the creation of the teaching module by showing the level of the geometry knowledge of the students; introduction of a Teaching Module by Activities aiming to propose a reflexive didactic routing directed to the conceptual construction because we believed that such an approach would favor the consolidation of the learning process by becoming significant to the apprentice, and the accomplishment of a Final Evaluation through which we established a comparison of the results obtained before and after the teaching intervention. The data gathered were analyzed qualitatively by means of a study of understanding categories of mathematical concepts, in addition to using descriptive statistics under the quantitative aspect. Based on the theory of Richard Skemp, about categorization of mathematical knowledge, in the levels of Relational and Instrumental Understanding were achieved in contextual situations and varied proportions, thus enabling a contribution in the learning of the geometrical concepts studied along with the students who took part in the research. We believe that this work may contribute with reflections about the learning processes, a concern which remained during all the stages of the research, and also that the technical competence along with the knowledge about the constructivist theory will condition the implementation of a new dynamics to the teaching and learning processes. We hope that the present research work may add some contribution to the teaching practice in the context of the teaching of Mathematics for the intermediate levels of the Elementary School

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aims to report the construction of a workbook for teaching trigonometry focusing the possible mix between the historical approach to the teaching of mathematics and the professional master´s degree. For this, considerations about the history of mathematics as a teaching methodology, the education of the math teacher who will teach trigonometry and also about the course of elaboration and experimentation of the activities in the workbook were made (using the methodological strategy of action research). Finally, the workbook for the teaching of trigonometry in a historical approach is presented as an example of the above mentioned mix between the history of mathematics, mathematical school content and the professional master´s degree

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record