112 resultados para Sistemas de comando e controle

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

PEREIRA, J. P. ; CASTRO, B. P. S. ; VALENTIM, R. A. M. . Kit Educacional para Controle e Supervisão Aplicado a Nível. Holos, Natal, v. 2, p. 68-72, 2009

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the technology progess, embedded systems using adaptive techniques are being used frequently. One of these techniques is the Variable Structure Model- Reference Adaptive Control (VS-MRAC). The implementation of this technique in embedded systems, requires consideration of a sampling period which if not taken into consideration, can adversely affect system performance and even takes the system to instability. This work proposes a stability analysis of a discrete-time VS-MRAC accomplished for SISO linear time-invariant plants with relative degree one. The aim is to analyse the in uence of the sampling period in the system performance and the relation of this period with the chattering and system instability

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PEREIRA, J. P. ; CASTRO, B. P. S. ; VALENTIM, R. A. M. . Kit Educacional para Controle e Supervisão Aplicado a Nível. Holos, Natal, v. 2, p. 68-72, 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atualmente há uma grande preocupação em relação a substituição das fontes não renováveis pelas fontes renováveis na geração de energia elétrica. Isto ocorre devido a limitação do modelo tradicional e da crescente demanda. Com o desenvolvimento dos conversores de potência e a eficácia dos esquemas de controle, as fontes renováveis têm sido interligadas na rede elétrica, em um modelo de geração distribuída. Neste sentido, este trabalho apresenta uma estratégia de controle não convencional, com a utilização de um controlador robusto, para a interconexão de sistemas fotovoltaicos com à rede elétrica trifásica. A compensação da qualidade de energia no ponto de acoplamento comum (PAC) é realizada pela estratégia proposta. As técnicas tradicionais utilizam detecção de harmônicos, já neste trabalho o controle das correntes é feita de uma forma indireta sem a necessidade desta detecção. Na estratégia indireta é de grande importância que o controle da tensão do barramento CC seja efetuado de uma forma que não haja grandes flutuações, e que a banda passante do controlador em regime permanente seja baixa para que as correntes da rede não tenham um alto THD. Por este motivo é utilizado um controlador em modo dual DSM-PI, que durante o transitório se comporta como um controlador em modo deslizante SM-PI, e em regime se comporta como um PI convencional. A corrente é alinhada ao ângulo de fase do vetor tensão da rede elétrica, obtido a partir do uso de um PLL. Esta aproximação permite regular o fluxo de potência ativa, juntamente com a compensação dos harmônicos e também promover a correção do fator de potência no ponto de acoplamento comum. Para o controle das correntes é usado um controlador dupla sequencia, que utiliza o princípio do modelo interno. Resultados de simulação são apresentados para demonstrar a eficácia do sistema de controle proposto

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance