4 resultados para Seismic Hazard

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work is to make a brief discussion of methods to estimate the parameters of the Generalized Pareto distribution (GPD). Being addressed the following techniques: Moments (moments), Maximum Likelihood (MLE), Biased Probability Weighted Moments (PWMB), Unbiased Probability Weighted Moments (PWMU), Mean Power Density Divergence (MDPD), Median (MED), Pickands (PICKANDS), Maximum Penalized Likelihood (MPLE), Maximum Goodness-of-fit (MGF) and the Maximum Entropy (POME) technique, the focus of this manuscript. By way of illustration adjustments were made for the Generalized Pareto distribution, for a sequence of earthquakes intraplacas which occurred in the city of João Câmara in the northeastern region of Brazil, which was monitored continuously for two years (1987 and 1988). It was found that the MLE and POME were the most efficient methods, giving them basically mean squared errors. Based on the threshold of 1.5 degrees was estimated the seismic risk for the city, and estimated the level of return to earthquakes of intensity 1.5°, 2.0°, 2.5°, 3.0° and the most intense earthquake never registered in the city, which occurred in November 1986 with magnitude of about 5.2º

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This MSc thesis describes brittle deformation in two seismic zones located in north-eastern Brazil: João Câmara and São Rafael, Rio Grande do Norte State. Both areas show seismogenic faults, Samambaia and São Rafael, indicated by narrow zones of epicentres with a strike of 040o, a lenght of 30 km and 4 km, and a depth of 1-12 and 0,5-4 km, respectively. The first seismological and geological studies suggested blind faults or faults that were still in the beginning of the nucleation process. The region is under E-W-oriented compression and is underlain by Precambrian terrains, deformed by one or more orogenic cycles, which generated shear zones generally marked by strong pervasive foliation and sigmoidal shapes. The crystalline basement is capped by the Cretaceous Potiguar basin, which is also locally capped by Pliocene continental siliciclastic deposits (Barreiras Formation), and Quaternary alluvium. The main aim of this study was to map epicentral areas and find whether there are any surface geological or morphotectonic expression related to the seismogenic faults. A detailed geological map was carried out in both seismic areas in order to identify brittle structures and fault-related drainage/topographic features. Geological and morphotectonic evidence indicate that both seismogenic faults take place along dormant structures. They either cut Cenozoic rocks or show topographic expression, i.e., are related to topographic heights or depressions and straight river channels. Faults rocks in the Samambaia and São Rafael faults are cataclasite, fault breccia, fault gouge, pseudotachylyte, and quartz veins, which point to reactivation processes in different crustal levels. The age of the first Samambaia and the São Rafael faulting movement possibly ranges from late Precambrian to late Cretaceous. Both fault cut across Precambrian fabric. They also show evidence of brittle processes which took place between 4 and 12 km deep, which probably have not occurred in Cenozoic times. The findings are of great importance for regional seismic hazard. They indicate that fault zones are longer than previously suggested by seismogenic studies. According to the results, the methodology used during this thesis may also be useful in other neotectonic investigation in intraplate areas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.