39 resultados para Segmentação

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been used successfully in the segmentation of images from several modalities. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper we present an extension of the fuzzy segmentation algorithm that achieves the segmentation of textures by employing adaptive affinity functions as long as we extend the algorithm to tridimensional images. The adaptive affinity functions change the size of the area where they compute the texture descriptors, according to the characteristics of the texture being processed, while three dimensional images can be described as a finite set of two-dimensional images. The algorithm then segments the volume image with an appropriate calculation area for each texture, making it possible to produce good estimates of actual volumes of the target structures of the segmentation process. We will perform experiments with synthetic and real data in applications such as segmentation of medical imaging obtained from magnetic rosonance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PEDRO, Edilson da Silva; ASSUMPÇAO, Maria Rita Pontes. Capacitação tecnológica em usina do setor sucroalcooleiro. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇAO, 23., Ouro Preto,MG, 2003. Anais...Ouro Preto, MG: UFOP, 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study it analyzes the Management of the Marketing of strategy Relationship as distinguishing for the host s companies of the city of Natal - RN. To carry through this analysis interviews with managers had been carried through, as well as the direct comment of processes, documents, actions and strategies developed for the hotels, with intention to know the level of perception and valuation of the relationship with customers, to verify resources and technologies used in the Management of the Relationship Marketing, identification, segmentation and differentiation of customers, personalization of products and services, and results of the emphasis in the relationship with customers for the host s companies. The research can be classified as exploratory - descriptive, and its universe is limited to the city of Natal, having enclosed hotels that have carried through tourist activity in 2005 and 2006. Still on the criteria of election of the sample, the study it investigated host s companies who if fit in the category superior luxury, or either, five stars, pertaining the national nets and international. How much to the treatment and analysis of the data the was made to leave of the theoretical support of the authors who work the thematic one and of the analysis of the interviews with managers, documents and processes observed for the researcher in the studied hotels. The research sample that the interviewed ones understand the importance to work the Management of the Marketing of Relationship in the host s companies me intention to get sustainable competitive advantage. One still evidenced that the searched hotels make use of strategies and instruments of Management of the Marketing of Relationship, however without an ample theoretical knowledge and yes only as base in the experience of the managers and spread processes already, generating one moment competitive advantage and not relationships of long duration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it has been suggested that retinal vasculature is a diffusion-limited aggregation (DLA) fractal, no study has been dedicated to standardizing its fractal analysis . The aims of this project was to standardize a method to estimate the fractal dimensions of retinal vasculature and to characterize their normal values; to determine if this estimation is dependent on skeletization and on segmentation and calculation methods; to assess the suitability of the DLA model and to determine the usefulness of log-log graphs in characterizing vasculature fractality . To achieve these aims, the information, mass-radius and box counting dimensions of 20 eyes vasculatures were compared when the vessels were manually or computationally segmented; the fractal dimensions of the vasculatures of 60 eyes of healthy volunteers were compared with those of 40 DLA models and the log-log graphs obtained were compared with those of known fractals and those of non-fractals. The main results were: the fractal dimensions of vascular trees were dependent on segmentation methods and dimension calculation methods, but there was no difference between manual segmentation and scale-space, multithreshold and wavelet computational methods; the means of the information and box dimensions for arteriolar trees were 1.29. against 1.34 and 1.35 for the venular trees; the dimension for the DLA models were higher than that for vessels; the log-log graphs were straight, but with varying local slopes, both for vascular trees and for fractals and non-fractals. This results leads to the following conclusions: the estimation of the fractal dimensions for retinal vasculature is dependent on its skeletization and on the segmentation and calculation methods; log-log graphs are not suitable as a fractality test; the means of the information and box counting dimensions for the normal eyes were 1.47 and 1.43, respectively, and the DLA model with optic disc seeding is not sufficient for retinal vascularization modeling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal