2 resultados para SOLVOTHERMAL ROUTE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.
Resumo:
Metal Organic Frameworks (MOFs) are hybrids materials, often crystalline, consisting of metal or metal clusters, connected by polytopic organic ligands repetitively, leading to structures, usually porous. In this work, MOFs based on lanthanide ions (La3+ and Gd3+) and dicarboxylate type of ligands (isophthalic and terephthalic acids), were synthesized by hydrothermal, solvothermal and hydro(solvo)thermal methods. The effects of the synthetic route as well as the type of heating, conventional or by microwave, on the structure and properties of MOFs were studied. The powder samples obtained were characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. The results suggest that the addition of an organic or inorganic base is needed to promote the deprotonation of the ligand, since in the samples prepared by the hydrothermal method, without the use of a base, no formation of the metalorganic framework was observed. On the other hand, the presence of DMF as solvent or cosolvent, afforded the deprotonation of the ligand with the consequent formation of MOFs. At least two different crystalline structures were identified for the samples prepared with terephthalic acid. These samples are isostructural with those reported for phases Eu(1,3-BDC)DMF, Eu2(1,4-BDC)3 (DMF)2 and Tb(1,4-BDC)H2O. The presence of water in the reaction medium in the hydro(solvo)thermal method, provoked the growth of the structure different from that observed in the absence of water. This can be explained by the difference in the coordination mode of water and DMF to lanthanide ions. Although not identified by XRD, the samples prepared with isophthalic acid, also present metalorganic structures, which was confirmed by the presence of the characteristic displacement of the carbonyl group band in their infrared spectra, compared to the spectrum of the pure ligand. This shift was also observed in the samples prepared with terephthalic acid. Thermal analisys shows that the metal organic frameworks do not collapse occurs at a temperature below 430°C.The analysis of scanning electron microscopy suggests that the morphology of powders is highly dependent on the type of heating used, conventional or by microwave.