32 resultados para Reação álcali-agregado

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the numerical simulation of the mechanical performance of concrete affected by Alkali-Aggregate Reaction or RAA, reported by Stanton in 1940. The RAA has aroused attention in the context of Civil Engineering from the early 80, when they were reported consequences of his swelling effect in concrete structures, including cracking, failure and loss of serviceability. Despite the availability of experimental results the problem formulation still lacks refinement so that your solution remains doubtful. The numerical simulation is important resource for the assessment of damages in structures caused by the reaction, and their recoveries The tasks of support of this work were performed by means of the finite element approach, about orthotropic non-linear formulation, and, thermodynamic model of deformation by RAA. The results obtained revealed that the swelling effect of RAA induced decline of the mechanical performance of concrete by decreasing the margin of safety prior to the material failure. They showed that the temperature influences, exclusively, the kinetics of the reaction, so that the failure was the more precocious the higher the temperature of the solid mass of concrete

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Behavioral Finance develop as it is perceived anomalies in these markets efficient. This fields of study can be grouped into three major groups: heuristic bias, tying the shape and inefficient markets. The present study focuses on issues concerning the heuristics of representativeness and anchoring. This study aimed to identify the then under-reaction and over-reaction, as well as the existence of symmetry in the active first and second line of the Brazilian stock market. For this, it will be use the Fuzzy Logic and the indicators that classify groups studied from the Discriminant Analysis. The highest present, indicator in the period studied, was the Liabilities / Equity, demonstrating the importance of the moment to discriminate the assets to be considered "winners" and "losers." Note that in the MLCX biases over-reaction is concentrated in the period of financial crisis, and in the remaining periods of statistically significant biases, are obtained by sub-reactions. The latter would be in times of moderate levels of uncertainty. In the Small Caps the behavioral responses in 2005 and 2007 occur in reverse to those observed in the Mid-Large Cap. Now in times of crisis would have a marked conservatism while near the end of trading on the Bovespa speaker, accompanied by an increase of negotiations, there is an overreaction by investors. The other heuristics in SMLL occurred at the end of the period studied, this being a under-reaction and the other a over-reaction and the second occurring in a period of financial-economic more positive than the first. As regards the under / over-reactivity in both types, there is detected a predominance of either, which probably be different in the context in MLCX without crisis. For the period in which such phenomena occur in a statistically significant to note that, in most cases, such phenomena occur during the periods for MLCX while in SMLL not only biases are less present as there is no concentration of these at any time . Given the above, it is believed that while detecting the presence of bias behavior at certain times, these do not tend to appear to a specific type or heuristics and while there were some indications of a seasonal pattern in Mid- Large Caps, the same behavior does not seem to be repeated in Small Caps. The tests would then suggest that momentary failures in the Efficient Market Hypothesis when tested in semistrong form as stated by Behavioral Finance. This result confirms the theory by stating that not only rationality, but also human irrationality, is limited because it would act rationally in many circumstances

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, mixed oxides were synthesized by two methods: polymeric precursor and gel-combustion. The oxides, Niquelate of Lanthanum, Cobaltate of Lanthanum and Cuprate of Lanthanum were synthesized by the polymeric precursor method, and treated at 300 º C for 2 hours, calcined at 800 º C for 6h in air atmosphere. In gel-combustion method were produced and oxides using urea and citric acid as fuel, forming for each fuel the following oxides Ferrate of Lanthanum, Cobaltato of Lanthanum and Ferrato of Cobalt and Lanthanum, which were submitted to the combustion process assisted by microwave power maximum of 10min. The samples were characterized by: thermogravimetric analysis, X-ray diffraction; fisisorção of N2 (BET method) and scanning electron microscopy. The reactions catalytic of depolymerization of poly (methyl methacrylate), were performed in a reactor of silica, with catalytic and heating system equipped with a data acquisition system and the gas chromatograph. For the catalysts synthesized using the polymeric precursor method, the cuprate of lanthanum was best for the depolymerization of the recycled polymer, obtaining 100% conversion in less time 554 (min), and the pure polymer, was the Niquelate of Lanthanum, with 100% conversion in less time 314 (min). By gel-combustion method using urea as fuel which was the best result obtained Ferrate of Lanthanum for the pure polymer with 100% conversion in less time 657 (min), and the recycled polymer was Cobaltate of Lanthanum with 100 % conversion in less time 779 (min). And using citric acid to obtain the best result for the pure polymer, was Ferrate of Lanthanum with 100% conversion in less time 821 (min and) for the recycled polymer, was Ferrate of Lanthanum with 98.28% conversion in less time 635 (min)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the area of advanced materials has been considerably, especially when it comes to materials for industrial use, such as is the case with structured porosity of catalysts suitable for catalytic processes. The use of catalysts combined with the fast pyrolysis process is an alternative to the oxygenate production of high added value, because, in addition to increasing the yield and quality of products, allows you to manipulate the selectivity to a product of interest, and therefore allows greater control over the characteristics of the final product. Based on these arguments, in this work were prepared titanium catalysts supported on MCM-41 for use in catalytic pyrolysis of biomass, called elephant grass. The reactions of pyrolysis of biomass were performed in a micro pyrolyzer, Py-5200, coupled to GC / MS, the company CDS Corporation, headquartered in the United States. The catalysts Ti-MCM-41 in different molar ratios were characterized by XRD, TG / DTG, FT-IR, SEM, XRF, UV-visible adsorption of nitrogen and the distribution of particle diameter and specific surface area measurement by the BET method. From the catalytic tests it was observed that the catalysts synthesized showed good results for the pyrolysis reaction.The main products were obtained a higher yield of aldehydes, ketones and furan. It was observed that the best reactivity is a direct function of the ratio Si/Ti, nature and concentration of the active species on mesoporous supports. Among the catalysts Ti-MCM-41 (molar ratio Si / Ti = 25 and 50), the ratio Si / Ti = 25 (400 ° C and 600 ° C) favored the cracking of oxygenates such as acids , aldehydes, ketones, furans and esters. Already the sample ratio Si / Ti = 50 had the highest yield of aromatic oxygenates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanostructures materials are characterized to have particle size smaller than 100 nm and could reach 1 nm. Due to the extremely reduced dimensions of the grains, the properties of these materials are significantly modified relatively when compared with the conventional materials. In the present work was accomplished a study and characterization of the molybdenum carbide, seeking obtain it with particles size in the nanometers order and evaluate its potential as catalyst in the reaction of partial methane oxidation. The method used for obtaining the molybdenum carbide was starting from the precursor ammonium heptamolybdate of that was developed in split into two oven, in reactor of fixed bed, with at a heating rate of 5ºC/min, in a flow of methane and hydrogen whose flow was of 15L/h with 5% of methane for all of the samples. The studied temperatures were 350, 500, 600, 650, 660, 675 and 700ºC and were conducted for 0, 60, 120 and 180 minutes, and the percent amount and the crystallite size of the intermediate phases were determined by the Rietveld refinement method. The carbide obtained at 660ºC for 3 hours of reaction showed the best results, 24 nm. Certain the best synthesis condition, a passivating study was accomplished, in these conditions, to verify the stability of the carbide when exposed to the air. The molybdenum carbide was characterized by SEM, TEM, elemental analysis, ICP-AES, TG in atmosphere of hydrogen and TPR. Through the elemental analysis and ICP-AES the presence carbon load was verified. TG in atmosphere of hydrogen proved that is necessary the passivating of the molybdenum carbide, because occur oxidation in room temperature. The catalytic test was accomplished in the plant of Fischer-Tropsch of CTGAS, that is composed of a reactor of fixed bed. Already the catalytic test showed that the carbide presents activity for partial oxidation, but the operational conditions should be adjusted to improve the conversion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the heterogeneous catalysts materials made from niobium show up as an alternative to meet the demand of catalysts for biodiesel production. This study aims to evaluate the potential of a heterogeneous catalyst derived from a complex of niobium in the reaction of methyl esterification of oleic acid. The catalyst was synthesized after calcination at different temperatures of a niobium complex ((NH4)3[NbO(C2O4)3].H2O) generating a niobium oxide nanostructure with a different commercial niobium oxide used to synthesize the complex. The commercial niobium oxide, the complex niobium and niobium catalyst were characterized by thermogravimetry (TG and DTA), surface area analysis (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing the catalyst has researched morphological and crystallographic indicating a catalytic potential higher than that of commercial niobium oxide characteristics. Factorial with central composite design point, with three factors (calcination temperature, molar ratio of alcohol/oleic acid and mass percentage of catalyst) was performed. Noting that the optimal experimental point was given by the complex calcination temperature of 600°C, a molar ratio alcohol/oleic acid of 3.007/1 and the catalyst mass percentage of 7.998%, with a conversion of 22.44% oleic acid in methyl oleate to 60 min of reaction. We performed a composite linear and quadratic regression to determine an optimal statistical point of the reaction, the temperature of calcination of the complex at 450°C, the molar ratio of alcohol/oleic acid 3.3408/1 and mass percentage of catalyst of 7.6833% . Kinetic modeling to estimate parameters for heterogeneous catalysis it set well the experimental results with a final conversion of 85.01% with 42.38% of catalyst and without catalyst at 240 min reaction was performed. Allowing to evaluate the catalyst catalytic studied has the potential to be used in biodiesel production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol