2 resultados para QUASI-CRYSTALS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal