8 resultados para QCD deconfinement phase transition
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
In this work we study a connection between a non-Gaussian statistics, the Kaniadakis
statistics, and Complex Networks. We show that the degree distribution P(k)of
a scale free-network, can be calculated using a maximization of information entropy in
the context of non-gaussian statistics. As an example, a numerical analysis based on the
preferential attachment growth model is discussed, as well as a numerical behavior of
the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive
epidemic process (DEP) on a regular lattice one-dimensional. The model is composed
of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion
rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This
model belongs to the category of non-equilibrium systems with an absorbing state and a
phase transition between active an inactive states. We investigate the critical behavior of
the DEP using an auto-adaptive algorithm to find critical points: the method of automatic
searching for critical points (MASCP). We compare our results with the literature and we
find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases
DA =DB, DA
Resumo:
The aim of this work is to derive theWard Identity for the low energy effective theory of a fermionic system in the presence of a hyperbolic Fermi surface coupled with a U(1) gauge field in 2+1 dimensions. These identities are important because they establish requirements for the theory to be gauge invariant. We will see that the identity associated Ward Identity (WI) of the model is not preserved at 1-loop order. This feature signalizes the presence of a quantum anomaly. In other words, a classical symmetry is broken dynamically by quantum fluctuations. Furthermore, we are considering that the system is close to a Quantum Phase Transitions and in vicinity of a Quantum Critical Point the fermionic excitations near the Fermi surface, decay through a Landau damping mechanism. All this ingredients need to be take explicitly to account and this leads us to calculate the vertex corrections as well as self energies effects, which in this way lead to one particle propagators which have a non-trivial frequency dependence
Resumo:
The magnetic order of bylayers composed by a ferromagnetic film (F) coupled with an antiferromagnetic film (AF) is studied. Piles of coupled monolayers describe the films and the interfilm coupling is described by an exchange interaction between the magnetic moments at the interface. The F has a cubic anisotropy while the AF has a uniaxial anisotropy. We analyze the effects of an external do magnetic field applied parallel to the interface. We consider the intralayer coupling is strong enough to keep parallel all moments of the monolayer an then they are described by one vector proportional to the magnetization of the layer. The interlayer coupling is represented by an exchange interaction between these vectors. The magnetic energy of the system is the sum of the exchange. Anisotropy and Zeeman energies and the equilibrium configuration is one that gives the absolute minimum of the total energy. The magnetization of the system is calculated and the influence of the external do field combined with the interfilm coupling and the unidirectional anisotropy is studied. Special attention is given to the region near of the transition fields. The torque equation is used to study dynamical behavior of these systems. We consider small oscillations around the equilibrium position and we negleet nonlinear terms to obtain the natural frequencies of the system. The dependence of the frequencies with the external do field and their behavior in the phase transition region is analized
Resumo:
A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie
Resumo:
Lucid dreaming (LD) is a mental state in which the subject is aware of being dreaming while dreaming. The prevalence of LD among Europeans, North Americans and Asians is quite variable (between 26 and 92%) (Stepansky et al., 1998; Schredl & Erlacher, 2011; Yu, 2008); in Latin Americans it is yet to be investigated. Furthermore, the neural bases of LD remain controversial. Different studies have observed that LD presents power increases in the alpha frequency band (Tyson et al., 1984), in beta oscillations recorded from the parietal cortex (Holzinger et al., 2006) and in gamma rhythm recorded from the frontal cortex (Voss et al., 2009), in comparison with non-lucid dreaming. In this thesis we report epidemiological and neurophysiological investigations of LD. To investigate the epidemiology of LD (Study 1), we developed an online questionnaire about dreams that was answered by 3,427 volunteers. In this sample, 56% were women, 24% were men and 20% did not inform their gender (the median age was 25 years). A total of 76.5% of the subjects reported recalling dreams at least once a week, and about two-thirds of them reported dreaming always in the first person, i.e. when the dreamer observes the dream from within itself, not as another dream character. Dream reports typically depicted actions (93.3%), known people (92.9%), sounds/voices (78.5%), and colored images (76.3%). The oneiric content was related to plans for upcoming days (37.8%), and memories of the previous day (13.8%). Nightmares were characterized by general anxiety/fear (65.5%), feeling of being chased (48.5%), and non-painful unpleasant sensations (47.6%). With regard to LD, 77.2% of the subjects reported having experienced LD at least once in their lifetime (44.9% reported up to 10 episodes ever). LD frequency was weakly correlated with dream recall frequency (r = 0.20, p <0.001) and was higher in men (χ2=10.2, p=0.001). The control of LD was rare (29.7%) and inversely correlated with LD duration (r=-0.38, p <0.001), which is usually short: to 48.5% of the subjects, LD takes less than 1 minute. LD occurrence is mainly associated with having sleep without a fixed time to wake up (38.3%), which increases the chance of having REM sleep (REMS). LD is also associated with stress (30.1%), which increases REMS transitions into wakefulness. Overall, the data suggest that dreams and nightmares can be evolutionarily understood as a simulation of the common situations that happen in life, and that are related to our social, psychological and biological integrity. The results also indicate that LD is a relatively common experience (but not recurrent), often elusive and difficult to control, suggesting that LD is an incomplete stationary stage (or phase transition) between REMS and wake state. Moreover, despite the variability of LD prevalence among North Americans, Europeans and Asians, our data from Latin Americans strengthens the notion that LD is a general phenomenon of the human species. To further investigate the neural bases of LD (Study 2), we performed sleep recordings of 32 non-frequent lucid dreamers (sample 1) and 6 frequent lucid dreamers (sample 2). In sample 1, we applied two cognitive-behavioral techniques to induce LD: presleep LD suggestion (n=8) and light pulses applied during REMS (n=8); in a control group we made no attempt to influence dreaming (n=16). The results indicate that it is quite difficult but still possible to induce LD, since we could induce LD in a single subject, using the suggestion technique. EEG signals from this one subject exhibited alpha (7-14 Hz) bursts prior to LD. These bursts were brief (about 3s), without significant change in muscle tone, and independent of the presence of rapid eye movements. No such bursts were observed in the remaining 31 subjects. In addition, LD exhibited significantly higher occipital alpha and right temporo-parietal gamma (30-50 Hz) power, in comparison with non-lucid REMS. In sample 2, LD presented increased frontal high-gamma (50-100 Hz) power on average, in comparison with non-lucid REMS; however, this was not consistent across all subjects, being a clear phenomenon in just one subject. We also observed that four of these volunteers showed an increase in alpha rhythm power over the occipital region, immediately before or during LD. Altogether, our preliminary results suggest that LD presents neurophysiological characteristics that make it different from both waking and the typical REMS. To the extent that the right temporo-parietal and frontal regions are related to the formation of selfconsciousness and body internal image, we suggest that an increased activity in these regions during sleep may be the neurobiological mechanism underlying LD. The alpha rhythm bursts, as well as the alpha power increase over the occipital region, may represent micro-arousals, which facilitate the contact of the brain during sleep with the external environment, favoring the occurrence of LD. This also strengthens the notion that LD is an intermediary state between sleep and wakefulness
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB